Problem: eq(n,xs,xs) -> T() eq(s(n),c(x,xs),c(x,ys)) -> eq(n,xs,ys) nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) Proof: Church Rosser Transformation Processor (to relative problem): strict: eq(n,xs,xs) -> T() eq(s(n),c(x,xs),c(x,ys)) -> eq(n,xs,ys) nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) weak: original problem: eq(n,xs,xs) -> T() eq(s(n),c(x,xs),c(x,ys)) -> eq(n,xs,ys) nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) critical peaks: Matrix Interpretation Processor: dim=1 interpretation: [inc](x0) = x0, [0] = 0, [nats] = 0, [c](x0, x1) = x0 + x1, [s](x0) = x0, [T] = 0, [eq](x0, x1, x2) = 2x0 + 2x1 + 2x2 + 2 orientation: eq(n,xs,xs) = 2n + 4xs + 2 >= 0 = T() eq(s(n),c(x,xs),c(x,ys)) = 2n + 4x + 2xs + 2ys + 2 >= 2n + 2xs + 2ys + 2 = eq(n,xs,ys) nats() = 0 >= 0 = c(0(),inc(nats())) inc(c(x,xs)) = x + xs >= x + xs = c(s(x),inc(xs)) problem: strict: eq(s(n),c(x,xs),c(x,ys)) -> eq(n,xs,ys) nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) weak: original problem: eq(n,xs,xs) -> T() eq(s(n),c(x,xs),c(x,ys)) -> eq(n,xs,ys) nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) Matrix Interpretation Processor: dim=2 interpretation: [1 1] [inc](x0) = [0 2]x0, [0] [0] = [0], [0] [nats] = [0], [1 0] [c](x0, x1) = [1 0]x0 + x1, [2 0] [0] [s](x0) = [1 1]x0 + [2], [1 1] [2 0] [0] [eq](x0, x1, x2) = [0 0]x0 + [0 1]x1 + x2 + [1] orientation: [3 1] [3 0] [2 0] [2] [1 1] [2 0] [0] eq(s(n),c(x,xs),c(x,ys)) = [0 0]n + [2 0]x + [0 1]xs + ys + [1] >= [0 0]n + [0 1]xs + ys + [1] = eq(n,xs,ys) [0] [0] nats() = [0] >= [0] = c(0(),inc(nats())) [2 0] [1 1] [2 0] [1 1] inc(c(x,xs)) = [2 0]x + [0 2]xs >= [2 0]x + [0 2]xs = c(s(x),inc(xs)) problem: strict: nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) weak: original problem: eq(n,xs,xs) -> T() eq(s(n),c(x,xs),c(x,ys)) -> eq(n,xs,ys) nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) KH confluence processor Split input TRS into two TRSs S and T: TRS S: nats() -> c(0(),inc(nats())) inc(c(x,xs)) -> c(s(x),inc(xs)) TRS T: eq(n,xs,xs) -> T() eq(s(n),c(x,xs),c(x,ys)) -> eq(n,xs,ys) As established above, T/S is terminating. T is strongly non-overlapping on S and S is strongly non-overlapping on T We get the following critical pairs, which are also S-critical pairs: T() = eq(n,xs,xs), eq(x233,x236,x236) = T() all these critical pairs are joinable with S union T. Please install theorem prover 'Prover9' and 'Mace4' for handling more TRSs. All S-critical pairs are joinable. We have to check confluence of S. Church Rosser Transformation Processor (no redundant rules): strict: inc(c(x,xs)) -> c(s(x),inc(xs)) nats() -> c(0(),inc(nats())) weak: critical peaks: 0 Closedness Processor (*feeble*): Qed