Problem: F(x,A(G(x))) -> G(F(x,x)) F(x,G(x)) -> G(F(x,x)) A(x) -> x H(x) -> H(B(H(x))) Proof: sorted: (order) 0:H(x) -> H(B(H(x))) 1:F(x,A(G(x))) -> G(F(x,x)) F(x,G(x)) -> G(F(x,x)) A(x) -> x ----- sorts [] sort attachment (non-strict) F : 1 x 1 -> 1 A : 1 -> 1 G : 1 -> 1 H : 0 -> 0 B : 0 -> 0 ----- 0:H(x) -> H(B(H(x))) Church Rosser Transformation Processor (critical pair closing system, Thm 2.11): critical peaks: joinable Qed 1:F(x,A(G(x))) -> G(F(x,x)) F(x,G(x)) -> G(F(x,x)) A(x) -> x Church Rosser Transformation Processor: strict: weak: critical peaks: 1 F(x,G(x)) <-2|1[]- F(x,A(G(x))) -0|[]-> G(F(x,x)) Redundant Rules Transformation: F(x,G(x)) -> G(F(x,x)) A(x) -> x Church Rosser Transformation Processor (kb): F(x,G(x)) -> G(F(x,x)) A(x) -> x critical peaks: joinable Matrix Interpretation Processor: dim=1 interpretation: [F](x0, x1) = x0 + x1 + 4, [A](x0) = x0 + 1, [G](x0) = x0 + 2 orientation: F(x,G(x)) = 2x + 6 >= 2x + 6 = G(F(x,x)) A(x) = x + 1 >= x = x problem: F(x,G(x)) -> G(F(x,x)) Matrix Interpretation Processor: dim=1 interpretation: [F](x0, x1) = x0 + 2x1 + 4, [G](x0) = x0 + 1 orientation: F(x,G(x)) = 3x + 6 >= 3x + 5 = G(F(x,x)) problem: Qed