Problem: f(g(x),g(y)) -> f(g(x),h(y)) f(h(x),g(y)) -> f(g(x),g(y)) f(g(x),h(y)) -> f(x,y) f(h(x),h(y)) -> f(y,x) f(x,y) -> f(y,x) g(x) -> h(x) h(x) -> g(x) Proof: AT confluence processor Complete TRS T' of input TRS: f(g(x),h(y)) -> f(x,y) f(h(x),h(y)) -> f(y,x) f(g(x),g(y)) -> f(y,x) f(h(x),g(y)) -> f(x,y) f(g(x),g(y)) -> f(g(x),h(y)) f(h(x),g(y)) -> f(g(x),g(y)) f(x,y) -> f(y,x) g(x) -> h(x) h(x) -> g(x) T' = (P union S) with TRS P:f(g(x),g(y)) -> f(g(x),h(y)) f(h(x),g(y)) -> f(g(x),g(y)) f(x,y) -> f(y,x) g(x) -> h(x) h(x) -> g(x) TRS S:f(g(x),h(y)) -> f(x,y) f(h(x),h(y)) -> f(y,x) f(g(x),g(y)) -> f(y,x) f(h(x),g(y)) -> f(x,y) S is linear and P is reversible. CP(S,S) = CP(S,P union P^-1) = f(x836,x837) = f(h(x837),g(x836)), f(x,y) = f(g(x),g(y)), f(x840,x841) = f(h(x841),g(x840)), f(x843,x842) = f(h(x843),h(x842)), f(x845,x844) = f(h(x845),h(x844)), f(y,x) = f(g(x),h(y)), f(x849,x848) = f(g(x849),g(x848)), f(y,x) = f(h(x),g(y)), f(x853,x852) = f(g(x853),g(x852)), f(x856,x857) = f(g(x857),h(x856)), f(x858,x859) = f(g(x859),h(x858)) CP(P union P^-1,S) = f(g(x),h(y)) = f(y,x), f(g(x),g(y)) = f(x,y), f(h(y),g(x)) = f(x,y), f(h(y),h(x)) = f(y,x), f(g(y),g(x)) = f(y,x), f(g(y),h(x)) = f(x,y), f(h(x),h(y)) = f(x,y), f(h(x),g(y)) = f(y,x) We have to check termination of S: Matrix Interpretation Processor: dim=1 interpretation: [f](x0, x1) = x0 + 4x1, [g](x0) = 6x0 + 4, [h](x0) = 7x0 orientation: f(g(x),h(y)) = 6x + 28y + 4 >= x + 4y = f(x,y) f(h(x),h(y)) = 7x + 28y >= 4x + y = f(y,x) f(g(x),g(y)) = 6x + 24y + 20 >= 4x + y = f(y,x) f(h(x),g(y)) = 7x + 24y + 16 >= x + 4y = f(x,y) problem: f(h(x),h(y)) -> f(y,x) Matrix Interpretation Processor: dim=1 interpretation: [f](x0, x1) = 2x0 + x1, [h](x0) = 3x0 + 1 orientation: f(h(x),h(y)) = 6x + 3y + 3 >= x + 2y = f(y,x) problem: Qed