Problem: and3(x,y,F()) -> F() and3(T(),T(),T()) -> T() and3(x,y,z) -> and3(y,z,x) Proof: AT confluence processor Complete TRS T' of input TRS: and3(x,y,F()) -> F() and3(T(),T(),T()) -> T() and3(y,F(),x) -> F() and3(F(),x,y) -> F() and3(x,y,z) -> and3(y,z,x) T' = (P union S) with TRS P:and3(x,y,z) -> and3(y,z,x) TRS S:and3(x,y,F()) -> F() and3(T(),T(),T()) -> T() and3(y,F(),x) -> F() and3(F(),x,y) -> F() S is linear and P is reversible. CP(S,S) = F() = F() CP(S,P union P^-1) = F() = and3(y,F(),x), F() = and3(F(),y,z), T() = and3(T(),T(),T()), F() = and3(F(),z,x), F() = and3(x,y,F()), F() = and3(y,z,F()), F() = and3(x,F(),z) CP(P union P^-1,S) = and3(y,F(),x) = F(), and3(T(),T(),T()) = T(), and3(F(),x,y) = F(), and3(x,y,F()) = F() We have to check termination of S: Matrix Interpretation Processor: dim=1 interpretation: [and3](x0, x1, x2) = 2x0 + 2x1 + 4x2, [F] = 3, [T] = 0 orientation: and3(x,y,F()) = 2x + 2y + 12 >= 3 = F() and3(T(),T(),T()) = 0 >= 0 = T() and3(y,F(),x) = 4x + 2y + 6 >= 3 = F() and3(F(),x,y) = 2x + 4y + 6 >= 3 = F() problem: and3(T(),T(),T()) -> T() Matrix Interpretation Processor: dim=1 interpretation: [and3](x0, x1, x2) = 5x0 + x1 + x2 + 1, [T] = 4 orientation: and3(T(),T(),T()) = 29 >= 4 = T() problem: Qed