Problem: +(0(),y) -> y +(s(x),y) -> s(+(y,x)) +(x,y) -> +(y,x) Proof: AT confluence processor Complete TRS T' of input TRS: +(0(),y) -> y +(s(x),y) -> s(+(y,x)) +(y,0()) -> y +(y,s(x)) -> s(+(x,y)) +(x,y) -> +(y,x) T' = (P union S) with TRS P:+(x,y) -> +(y,x) TRS S:+(0(),y) -> y +(s(x),y) -> s(+(y,x)) +(y,0()) -> y +(y,s(x)) -> s(+(x,y)) S is linear and P is reversible. CP(S,S) = 0() = 0(), s(x) = s(+(x,0())), s(+(0(),x208)) = s(x208), s(+(s(x),x210)) = s(+(x,s(x210))), s(x) = s(+(0(),x)), s(+(x215,0())) = s(x215), s(+(x217,s(x))) = s(+(s(x217),x)) CP(S,P union P^-1) = y = +(y,0()), x = +(x,0()), s(+(y,x232)) = +(y,s(x232)), s(+(x,x234)) = +(x,s(x234)), x = +(0(),x), y = +(0(),y), s(+(x239,x)) = +(s(x239),x), s(+(x241,y)) = +(s(x241),y) CP(P union P^-1,S) = +(y,0()) = y, +(y,s(x)) = s(+(y,x)), +(0(),y) = y, +(s(x),y) = s(+(x,y)) We have to check termination of S: Matrix Interpretation Processor: dim=1 interpretation: [+](x0, x1) = x0 + x1, [0] = 3, [s](x0) = x0 orientation: +(0(),y) = y + 3 >= y = y +(s(x),y) = x + y >= x + y = s(+(y,x)) +(y,0()) = y + 3 >= y = y +(y,s(x)) = x + y >= x + y = s(+(x,y)) problem: +(s(x),y) -> s(+(y,x)) +(y,s(x)) -> s(+(x,y)) Matrix Interpretation Processor: dim=1 interpretation: [+](x0, x1) = 4x0 + 4x1, [s](x0) = x0 + 2 orientation: +(s(x),y) = 4x + 4y + 8 >= 4x + 4y + 2 = s(+(y,x)) +(y,s(x)) = 4x + 4y + 8 >= 4x + 4y + 2 = s(+(x,y)) problem: Qed