Problem: H(F(x,y)) -> F(H(R(x)),y) F(x,K(y,z)) -> G(P(y),Q(z,x)) H(Q(x,y)) -> Q(x,H(R(y))) Q(x,H(R(y))) -> H(Q(x,y)) H(G(x,y)) -> G(x,H(y)) Proof: AT confluence processor Complete TRS T' of input TRS: H(F(x,y)) -> F(H(R(x)),y) F(x,K(y,z)) -> G(P(y),Q(z,x)) H(G(x,y)) -> G(x,H(y)) H(Q(x,y)) -> Q(x,H(R(y))) Q(x,H(R(y))) -> H(Q(x,y)) T' = (P union S) with TRS P:H(Q(x,y)) -> Q(x,H(R(y))) Q(x,H(R(y))) -> H(Q(x,y)) TRS S:H(F(x,y)) -> F(H(R(x)),y) F(x,K(y,z)) -> G(P(y),Q(z,x)) H(G(x,y)) -> G(x,H(y)) S is left-linear and P is reversible. CP(S,S) = H(G(P(x185),Q(x186,x))) = F(H(R(x)),K(x185,x186)) CP(S,P union P^-1) = PCP_in(P union P^-1,S) = We have to check termination of S: Matrix Interpretation Processor: dim=1 interpretation: [P](x0) = 4x0 + 1, [H](x0) = 4x0 + 1, [K](x0, x1) = 4x0 + 4x1 + 2, [Q](x0, x1) = x0 + x1, [F](x0, x1) = x0 + 4x1 + 7, [G](x0, x1) = 4x0 + x1 + 2, [R](x0) = x0 + 4 orientation: H(F(x,y)) = 4x + 16y + 29 >= 4x + 4y + 24 = F(H(R(x)),y) F(x,K(y,z)) = x + 16y + 16z + 15 >= x + 16y + z + 6 = G(P(y),Q(z,x)) H(G(x,y)) = 16x + 4y + 9 >= 4x + 4y + 3 = G(x,H(y)) problem: Qed