Problem: not true -> false not false -> true fold (\x. F x) (\x. G x) z nil -> z fold (\x. F x) (\x. G x) z (0 y) -> fold (\x. F x) (\x. G x) (F z) y fold (\x. F x) (\x. G x) z (1 y) -> fold (\x. F x) (\x. G x) (G z) y Proof: Modularity Decomposition: 0:not true -> false not false -> true 1:fold (\x. F x) (\x. G x) z nil -> z fold (\x. F x) (\x. G x) z (0 y) -> fold (\x. F x) (\x. G x) (F z) y fold (\x. F x) (\x. G x) z (1 y) -> fold (\x. F x) (\x. G x) (G z) y ----- 0:not true -> false not false -> true Higher-Order Church Rosser Processor: not true -> false not false -> true critical peaks: 0 Higher-Order Closedness Processor: all critical pairs are trivial Qed 1:fold (\x. F x) (\x. G x) z nil -> z fold (\x. F x) (\x. G x) z (0 y) -> fold (\x. F x) (\x. G x) (F z) y fold (\x. F x) (\x. G x) z (1 y) -> fold (\x. F x) (\x. G x) (G z) y Higher-Order Church Rosser Processor: fold (\x. F x) (\x. G x) z nil -> z fold (\x. F x) (\x. G x) z (0 y) -> fold (\x. F x) (\x. G x) (F z) y fold (\x. F x) (\x. G x) z (1 y) -> fold (\x. F x) (\x. G x) (G z) y critical peaks: 0 Higher-Order Closedness Processor: all critical pairs are trivial Qed