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Abstract
The first-order theory of rewriting is a decidable theory for
finite left-linear right-ground rewrite systems, implemented
in FORT. We present a formally verified variant of the de-
cision procedure for the class of linear variable-separated
rewrite systems. This variant supports a more expressive
theory and is based on the concept of anchored ground tree
transducers. The correctness of the decision procedure is
verified by a formalization in Isabelle/HOL on top of the
Isabelle Formalization of Rewriting (IsaFoR).

CCS Concepts: • Theory of computation→ Equational
logic and rewriting; Logic and verification; Tree lan-
guages.

Keywords: first-order theory of rewriting, tree automata,
formalization
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1 Introduction
Dauchet and Tison [6] proved that the first-order theory of
rewriting is decidable for finite ground rewrite systems. In
this theory well-known properties like ground-confluence,
(weak) normalization and termination are expressible. The
decision procedure is based on tree automata techniques [3]
and implemented in FORT [12, 13]. To ensure the correct-
ness of FORT, a natural idea is to formalize the underlying
decision procedure for the first-order theory and certify the
yes/no answers produced by FORT. The contribution of this
paper lies in the former; we present a complete formalization
in Isabelle/HOL of a variant of the decision procedure for
the larger class of linear variable-separated rewrite systems.
Felgenhauer et al. [8] formalized operations on ground

tree transducers and RR𝑛 automata in order to obtain a veri-
fied ground-confluence prover for linear variable-separated
systems. More recently, Lochmann and Middeldorp [11] pre-
sented formalized proofs of the infinity and normal form
predicates. The former is crucial for expressing the termina-
tion property. The latter is based on a direct automaton con-
struction due to Comon [2] and gives rise to a more efficient
procedure than the one based on the formula ¬∃𝑢 (𝑡 → 𝑢).

Formalization efforts are critical for ensuring correctness.
An additional outcome is that they may give rise to sim-
pler and more efficient constructions and algorithms. For
instance, the formalized proof in [8] that relations accepted
by ground tree transducers are effectively closed under tran-
sitive closure is considerably simpler than the textbook proof
in [3, Theorem 3.2.14]. Also in this paper we revisit the un-
derlying automata theory. We introduce the class of anchored
ground tree transducers. These are similar to ground tree
transducers but have better closure properties, which reduces
the number of constructions needed to represent the first-
order theory of rewriting. Some of these closure properties
are proved (and formalized) using the simple but equivalent

https://doi.org/10.1145/3437992.3439918
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class of pair automata. Due to the contributions in this paper,
the formalized theory is actually more expressive than the
one supported by FORT.

Our formalizations are based on IsaFoR [14],1 an Isabelle/
HOL library containing numerous abstract results and con-
crete techniques from the rewriting literature. Our own de-
velopment can be found at
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021
Most definitions, theorems, and lemmata in this paper di-
rectly correspond to the formalization. These are indicated
by the ✓ symbol, which links to an HTML rendering of our
formalization in the accompanying supplementary material,
for those who like to dive right into the actual Isabelle code.
In the running text (traditional) proof details are given.
The remainder of the paper is organized as follows. In

the next section we recall basic notions and results on term
rewriting, tree automata and ground tree transducers, and
the first-order theory of rewriting. The new contributions
start in Section 3, where we introduce, in a systematic way,
several context closure operations on binary relations that
are used to represent the binary predicates in the first-order
theory of rewriting. Anchored ground tree transducers and
pair automata are introduced in Section 4, and in Section 5
we present closure properties of relations accepted by an-
chored ground tree transducers. Section 6 relates anchored
ground tree transducers to RR2 automata and presents the
(formalized) results on RR𝑛 automata. In Section 7 we show,
on a concrete example formula, how the results of the pre-
ceding sections are used to verify whether the formula holds
for a particular rewrite system. Details of the Isabelle formal-
ization are given in Section 8. We conclude in Section 9.

2 Preliminaries
Familiarity with first-order term rewriting [1] and tree au-
tomata [3] will be helpful. Below we recall some definitions
and notations.

2.1 Term Rewriting
We assume a finite signature F containing at least one con-
stant symbol and a disjoint set of variables V . The set of
terms built up from F andV is denoted by T (F ,V), while
T (F ) denotes the (non-empty) set of ground terms. The set
of variables occurring in a term 𝑡 is denoted by Var(𝑡). A
term is linear if it does not contain multiple occurrences of
the same variable. Positions are strings of positive integers
which are used to address subterms. The set of positions in
a term 𝑡 is denoted by Pos(𝑡) and the root position by 𝜖 . A
substitution is a mapping 𝜎 from variables to terms and 𝑡𝜎
denotes the result of applying 𝜎 to a term 𝑡 . A context 𝐶 is a
term that contains exactly one hole, denoted by the special
constant □ ∉ F . We write 𝐶 [𝑡] for the result of replacing
the hole in 𝐶 by the term 𝑡 . A term rewrite system (TRS)
1http://cl-informatik.uibk.ac.at/isafor/

R is a set of rules ℓ → 𝑟 between terms ℓ, 𝑟 ∈ T (F ,V). A
TRS R is linear if its rewrite rules consist of linear terms.
We call R variable-separated if Var(ℓ) ∩ Var(𝑟 ) = ∅ for
every ℓ → 𝑟 ∈ R. In this paper we are concerned with finite,
linear, variable-separated TRSs R and we consider rewriting
on ground terms: 𝑡 →R 𝑢 for ground terms 𝑡 , 𝑢 if there exist
a context 𝐶 , a rewrite rule ℓ → 𝑟 ∈ R, and a substitution
𝜎 such that 𝑡 = 𝐶 [ℓ𝜎] and 𝑢 = 𝐶 [𝑟𝜎]. We write →∗R for
the reflexive and transitive closure of→R . Further relations
on terms will be introduced in the next section. We drop
the subscript R when it can be inferred from the context. A
ground normal form is a ground term 𝑡 such that 𝑡 →R 𝑢

for no term 𝑢. We write NF(R) for the set of ground normal
forms of R.

Example 2.1. We use the TRS R consisting of the rewrite
rules

a→ b f (a) → b g(a, 𝑥) → f (a)

as leading example in this paper.We have f (g(a, b)) →∗R f (b)
with ground normal form f (b).

2.2 Tree Automata
A (finite bottom-up) tree automaton A = (F , 𝑄,𝑄 𝑓 ,Δ) con-
sists of a finite signature F , a finite set 𝑄 of states, disjoint
from F , a subset𝑄 𝑓 ⊆ 𝑄 of final states, and a set of transition
rules Δ. Every transition rule has one of the following two
shapes: 𝑓 (𝑝1, . . . , 𝑝𝑛) → 𝑞 with 𝑓 ∈ F and 𝑝1, . . . , 𝑝𝑛, 𝑞 ∈ 𝑄 ,
or 𝑝 → 𝑞 with 𝑝, 𝑞 ∈ 𝑄 . Transition rules of the second shape
are called 𝜖-transitions. Transition rules can be viewed as
rewrite rules between ground terms in T (F ∪𝑄). The in-
duced rewrite relation is denoted by→Δ or→A . A ground
term 𝑡 ∈ T (F ) is accepted by A if 𝑡 →∗Δ 𝑞 for some 𝑞 ∈ 𝑄 𝑓 .
The set of all accepted terms is denoted by 𝐿(A) and a set
𝐿 of ground terms is regular if 𝐿 = 𝐿(A) for some tree au-
tomaton A. A tree automaton A is deterministic if there
are no 𝜖-transitions and no two transition rules with the
same left-hand side. We say that A is completely defined if
it contains a transition rule with left-hand side 𝑓 (𝑝1, . . . , 𝑝𝑛)
for every 𝑛-ary function symbol 𝑓 and every combination
𝑝1, . . . , 𝑝𝑛 of states. All regular sets are accepted by a com-
pletely defined, deterministic tree automaton. The class of
regular sets is effectively closed under boolean operations.
Moreover, membership and emptiness are decidable.

2.3 Regular Relations
For relations on ground terms two different types of au-
tomata are used. The first one is restricted to binary rela-
tions. A ground tree transducer (GTT for short) is a pair
G = (A,B) of tree automata over the same signature F .
Let 𝑠 and 𝑡 be ground terms in T (F ). We say that the pair
(𝑠, 𝑡) is accepted by G if 𝑠 →∗A 𝑢 →∗

B 𝑡 for some term
𝑢 ∈ T (F ∪ 𝑄). Here 𝑄 is the combined set of states of A
and B. The set of all such pairs is denoted by 𝐿(G). Observe

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/
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that 𝐿(G) is a binary relation on T (F ). A binary relation ⊲⊳

on ground terms is a GTT relation if there exists a GTT G
such that ⊲⊳ = 𝐿(G). The class of GTT relations is effectively
closed under composition, inverse, and transitive closure [4].
GTT relations are not closed under the boolean operations
complement, intersection, and union.

The second method uses standard tree automata operating
on an encoding of the relation as a set of ground terms over
a special signature. For a signature F and 𝑛 > 0 we let
F (𝑛) = (F ∪ {⊥})𝑛 . Here, ⊥ ∉ F is a fresh constant. The
arity of a symbol 𝑓1 · · · 𝑓𝑛 ∈ F (𝑛) is the maximum of the
arities of 𝑓1, . . . , 𝑓𝑛 . Given 𝑛 terms 𝑡1, . . . , 𝑡𝑛 ∈ T (F ), the
term ⟨𝑡1, . . . , 𝑡𝑛⟩ is the unique term 𝑢 ∈ T (F (𝑛) ) such that
Pos(𝑢) = Pos(𝑡1)∪· · ·∪Pos(𝑡𝑛) and𝑢 (𝑝) = 𝑓1 · · · 𝑓𝑛 where
𝑓𝑖 = 𝑡𝑖 (𝑝) if 𝑝 ∈ Pos(𝑡𝑖 ) and ⊥ otherwise, for all positions
𝑝 ∈ Pos(𝑢).

Example 2.2. For F = {a, b, f, g} in Example 2.1 we have

⟨g(a, f (b)), f (a)⟩ = gf (aa, f⊥(b⊥)) ∈ T (F (2) )
⟨a, f (f (b)), g(b, a)⟩ = afg(⊥fb(⊥b⊥),⊥⊥a) ∈ T (F (3) )

An 𝑛-ary relation 𝑅 on T (F ) is regular if its encoding
{ ⟨𝑡1, . . . , 𝑡𝑛⟩ | (𝑡1, . . . , 𝑡𝑛) ∈ 𝑅 } is regular. The class of all 𝑛-
ary regular relations is denoted by RR𝑛 . It is effectively closed
under boolean operations. We present three more closure op-
erations. Let 𝑅 be an 𝑛-ary relation over T (F ). If 𝑛 ⩾ 2 and
1 ⩽ 𝑖 ⩽ 𝑛 then the 𝑖-th projection of 𝑅 is the relation Π𝑖 (𝑅) =
{ (𝑡1, . . . , 𝑡𝑖−1, 𝑡𝑖+1, . . . , 𝑡𝑛) | (𝑡1, . . . , 𝑡𝑛) ∈ 𝑅 }. If 1 ⩽ 𝑖 ⩽ 𝑛 + 1
then the 𝑖-th cylindrification of 𝑅 is the relation 𝐶𝑖 (𝑅) =
{ (𝑡1, . . . , 𝑡𝑖−1, 𝑢, 𝑡𝑖 , . . . , 𝑡𝑛) | (𝑡1, . . . , 𝑡𝑛) ∈ 𝑅 and 𝑢 ∈ T (F ) }.
Moreover, if 𝜎 is a permutation on {1, . . . , 𝑛 } then 𝜎 (𝑅) =
{ (𝑡𝜎 (1) , . . . , 𝑡𝜎 (𝑛) ) | (𝑡1, . . . , 𝑡𝑛) ∈ 𝑅 }. The class of regular re-
lations is effectively closed under projection, cylindrification,
and permutation. The class of binary regular relations in-
cludes all GTT relations, but unlike the latter, it is not closed
under composition and transitive closure.

2.4 First-Order Theory of Rewriting
Besides→ and→∗, many other relations on ground terms
are of interest: −→∥ (parallel rewriting),→𝜖 (rewrite step at
the root position), and→>𝜖 (rewrite step below the root),
to name a few. These relations constitute predicates in the
first-order theory of rewriting. The theory that we consider
in this paper is a first-order logic over a language without
function symbols that contains (among others) the following
predicate symbols:

→ −→∥ →𝜖 →>𝜖 →+ →∗ ↔∗ INF⊲⊳

As models we consider finite, linear, variable separated TRSs
R whose signature F contains at least one constant symbol.
The non-empty set of ground terms T (F ) serves as domain
for the variables in formulas. The binary predicate symbols
have their expected meaning. The unary predicate INF⊲⊳ is
parameterized by an arbitrary yet regular binary relation

⊲⊳ and holds for a ground term 𝑡 if the set {𝑢 | 𝑡 ⊲⊳ 𝑢 }
is infinite. When ⊲⊳ is instantiated to →+, INF⊲⊳ holds for
ground terms with infinitely many different reducts. It is
used to characterize the termination property:

¬∃ 𝑡 ( INF→+ (𝑡) ∨ 𝑡 →+ 𝑡 )

This formula correctly models termination for every finite
variable-separated TRS R, even if→R is not finitely branch-
ing. (More precisely, if R contains a rewrite rule ℓ → 𝑟 with
a variable 𝑥 ∈ Var(𝑟 ) \Var(ℓ) then R is not terminating. By
taking any ground instance of ℓ as 𝑡 , 𝑡 →+ 𝑡 holds when 𝑟 = 𝑥

and INF→+ (𝑡) holds when 𝑟 ≠ 𝑥 because then there must be
infinitely many ground terms 𝑢 such that 𝑡 →+ 𝑟 {𝑥 ↦→ 𝑢 }.)
We briefly describe the decision procedure for this theory.
A more detailed explanation can be found in [12]. Given a
formula 𝜑 , RR2 automata are constructed for the atomic sub-
formulas with a binary predicate symbol. Depending on the
predicate, intermediate GTTs may need to be constructed
before an RR2 automaton is obtained. Atomic subformulas
with the unary INF⊲⊳ predicate are translated into RR1 au-
tomata (which are just standard tree automata). The logical
operators of the formula are then mapped to closure opera-
tions on RR𝑛 automata. A non-emptiness (emptiness) check
of the final automaton reveals whether 𝜑 holds (or not).

The formalized variant of the decision procedure that we
present in this paper differs in the construction of RR2 au-
tomata for the atomic subformulas with a binary predicate
symbol. In FORT,→ is directly represented as an RR2 au-
tomaton whereas for→∗ first a GTT is constructed for −→∥ ,
which is subsequently subjected to a transitive closure op-
eration to obtain a representation of −→∥ + = →∗, and then
finally transformed into an RR2 automaton. For the other
binary relations (like→+,→>𝜖 , and↔∗) ad-hoc construc-
tions on GTTs and RR2 automata are used. The formalized
procedure described below generates all binary relations
from the root step relation→𝜖 , which is represented by an
anchored GTT, using a few primitive closure operators. This
uniform presentation benefits the formalization effort by re-
ducing duplication. As a byproduct, a richer set of relations
is supported.

3 Context Operations
In the next few sections we describe formalized automata
constructions to decide the first-order theory of rewriting. To
save considerable formalization efforts, we introduce a few
primitives that operate on binary relations that are accepted
by various kinds of tree automata. These primitives are suf-
ficient to generate all binary rewrite relations supported by
FORT. For defining the semantics of the primitives, we in-
troduce some context operations on binary relations in this
section.

Definition 3.1. Let F be a signature. A multi-hole context
is an element of T (F ⊎ {□}) where □ is a fresh constant
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symbol, called hole. If 𝐶 is a multi-hole context with 𝑛 holes
and 𝑡1, . . . , 𝑡𝑛 are terms in T (F ) then 𝐶 [𝑡1, . . . , 𝑡𝑛] denotes
the term in T (F ) obtained from 𝐶 by replacing the holes
from left to right with 𝑡1, . . . , 𝑡𝑛 . We write C for the set of
all multi-hole contexts. Given a binary relation ⊲⊳ on ground
terms in T (F ) and a set of multi-hole contexts D ⊆ C, we
write D(⊲⊳) for the relation { (𝐶 [𝑡1, . . . , 𝑡𝑛],𝐶 [𝑢1, . . . , 𝑢𝑛]) |
𝐶 ∈ D has 𝑛 holes and 𝑡𝑖 ⊲⊳ 𝑢𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛 }.

We consider two ways to restrict multi-hole contexts: re-
stricting the number of holes and restricting the position of
the holes.
• We denote the set of multi-hole contexts with exactly
one hole by C1. The set of multi-hole contexts with at
least one hole is denoted by C> . Moreover C⩾ simply
denotes C.
• We denote the set of multi-hole contexts with the prop-
erty that every hole occurs below the root position by
C> . This includes the setT (F ) of ground terms (which
are multi-hole contexts without holes). Similarly, C𝜖
denotes the set of multi-hole contexts with the prop-
erty that every hole occurs at the root position. So
C𝜖 = {□} ∪ T (F ). Moreover, C⩾ simply denotes C.

By combining both types of restrictions, we obtain nine ways
for defining new binary relations.

Definition 3.2. Let ⊲⊳ be a binary relation on T (F ). Given
a number constraint 𝑛 ∈ {⩾, 1, > } and a position constraint
𝑝 ∈ {⩾, 𝜖, > }, we define the binary relation ⊲⊳𝑛𝑝 on T (F ) as
(C𝑛 ∩ C𝑝 ) (⊲⊳). ✓

Note that ⊲⊳⩾𝜖 = ⊲⊳= and ⊲⊳1𝜖 = ⊲⊳>𝜖 = ⊲⊳, for any ⊲⊳.

Example 3.3. Recall the TRS R from our leading example
and consider the multi-hole contexts

𝐶1 = □ 𝐶2 = f (□) 𝐶3 = g(□, a) 𝐶4 = g(□,□) 𝐶5 = f (a)

We have𝐶1,𝐶2,𝐶3 ∈ C1,𝐶1,𝐶2,𝐶3,𝐶4 ∈ C> ,𝐶1,𝐶5 ∈ C𝜖 , and
𝐶2,𝐶3,𝐶4,𝐶5 ∈ C>. Moreover, (𝐶2 [a],𝐶2 [b]) ∈ (→R)1> and
(𝐶4 [a, a],𝐶4 [b, b]) ∉ (→R)1> .

Because C⩾ = C⩾ = C, the relation ⊲⊳⩾⩾ is the multi-hole
context closure of ⊲⊳ . Using the root step relation→𝜖 induced
by a linear, variable-separated TRS R as ⊲⊳, we obtain eight
different relations for (→𝜖 )𝑛𝑝 :

(→𝜖 )⩾⩾ = −→∥ (→𝜖 )1⩾ = → (→𝜖 )>⩾ = −→¤∥
(→𝜖 )⩾𝜖 = →=

𝜖 (→𝜖 )1𝜖 = →𝜖 (→𝜖 )>𝜖 = →𝜖

(→𝜖 )⩾> = −→∥ >𝜖 (→𝜖 )1> = →>𝜖 (→𝜖 )>> = −→¤∥ >𝜖

Here −→¤∥ denotes a non-empty parallel step, −→∥ >𝜖 a parallel
step where only redexes below the root are contracted, and
−→¤∥ >𝜖 a non-empty parallel step where only redexes below
the root are contracted.

Example 3.4. Consider the term pairs 𝜋1 =

(g(a, a), g(b, b)), 𝜋2 = (g(a, a), f (a)), and 𝜋3 =

(g(a, a), g(a, a)). We have 𝜋1, 𝜋2, 𝜋3 ∈ −→∥ , 𝜋1, 𝜋2 ∈ −→¤∥ ,
𝜋1 ∈ −→∥ >𝜖 ∩ −→¤∥ >𝜖 , and 𝜋3 ∉ −→¤∥ >𝜖 .

4 Anchored Ground Tree Transducers
For representing the root step relation→𝜖 of a TRS we use
the following modification of GTTs.

Definition 4.1. For a GTT G = (A,B), the relation { (𝑠, 𝑡) |
𝑠 →∗A 𝑞 →∗

B 𝑡 for some 𝑞 ∈ 𝑄 } is the anchored GTT relation
associated with G and is denoted by 𝐿𝑎 (G). ✓

The resulting language class coincides with binary Rec×
as defined in [3, Section 3.2.1]. The more operational view
in Definition 4.1 benefits the developments below.
We obviously have 𝐿𝑎 (G) ⊆ 𝐿(G). Anchored GTT rela-

tions have the advantage that they can represent the root
step relation→𝜖 . Moreover, they have better closure proper-
ties than GTT relations. When we speak of “anchored GTTs”,
we always have 𝐿𝑎 (G) in mind.

According to the following lemma, the multi-hole context
closure of an anchored GTT relation is a GTT relation using
the same GTT.

Lemma 4.2. For every GTT G, 𝐿(G) = 𝐿𝑎 (G)⩾⩾ . ✓

Proof. Let G = (A,B). If (𝑠, 𝑡) ∈ 𝐿(G) then there exist a
context 𝐶 with 𝑛 ⩾ 0 holes, terms 𝑠1, . . . , 𝑠𝑛, 𝑡1, . . . , 𝑡𝑛 , and
states 𝑞1, . . . , 𝑞𝑛 such that 𝑠 = 𝐶 [𝑠1, . . . , 𝑠𝑛], 𝑡 = 𝐶 [𝑡1, . . . , 𝑡𝑛],
and 𝑠𝑖 →∗A 𝑞𝑖 →∗

B 𝑡𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛. We have (𝑠𝑖 , 𝑡𝑖 ) ∈
𝐿𝑎 (G) for all 1 ⩽ 𝑖 ⩽ 𝑛 by definition of anchored GTTs.
Moreover,𝐶 ∈ C⩾∩C⩾ . Hence (𝑠, 𝑡) ∈ 𝐿𝑎 (G)⩾⩾ . The converse
is equally easy. □

In the formalization we also employ an equivalent but
more flexible definition.

Definition 4.3. A pair automaton is a triple P = (𝑄2,A,B)
whereA,B are tree automata and𝑄2 ⊆ 𝑄A×𝑄B . We define
𝐿(P) = { (𝑠, 𝑡) | 𝑠 →A 𝑝 and 𝑡 →B 𝑞 with (𝑝, 𝑞) ∈ 𝑄2 }. ✓

Lemma 4.4. Anchored GTTs and pair automata are equiva-
lent. ✓✓

Proof. If G = (A,B) is a GTT then 𝐿𝑎 (G) = 𝐿(P) for
the pair automaton P = (𝑄2,A,B) with 𝑄2 = { (𝑝, 𝑝) |
𝑝 ∈ 𝑄A ∩ 𝑄B }. Conversely, given a pair automaton P =

(𝑄2,A,B), we first rename the states of B to obtain an
equivalent tree automaton B ′ such that A and B ′ do not
share states. We add an 𝜖-transition 𝑝 → 𝑞′ to A for every
(𝑝, 𝑞) ∈ 𝑄2, resulting in the tree automaton A ′. Here 𝑞′ is
the (renamed) state in B ′ that corresponds to state 𝑞 in B.
The GTT G = (A ′,B ′) satisfies 𝐿𝑎 (G) = 𝐿(P). □

The above lemma will be used in the sequel without men-
tion. Different constructions (e.g. [4, 5, 8]) exist to prove the
following basic result. The other binary relations associated
with a TRS R (like −→∥ R and↔∗R ) will be obtained from the
root step relation→𝜖 by automata constructions that operate
on anchored GTT relations and RR2 relations.

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Lift_Root_Step.html#def:lift_root_step
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT.html#def:agtt_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT.html#lem:gtt_lang_from_agtt_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#def:pair_at_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#lem:pair_at_agtt
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#lem:pair_at_agtt_conv
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Lemma 4.5. The relation→𝜖 is an anchored GTT relation
for every linear variable-separated TRS R. ✓

Example 4.6. The anchored GTT G = (A,B) with A con-
sisting of the transition rules

a→ 0 b→ 0 f (0) → 0 g(0, 0) → 0
a→ 1 f (1) → 2 g(1, 0) → 3

and B consisting of the transition rules
a→ 4 b→ 1 b→ 2 f (4) → 3

accepts the root step relation→𝜖 of our leading TRS R. For
instance, the ground instance g(a, f (b)) → f (a) of the third
rewrite rule g(a, 𝑥) → f (a) of R is accepted in state 3:

g(a, f (b)) →∗A g(1, f (0)) →A g(1, 0) →A 3
f (a) →B f (4) →B 3

The pair automaton P = ({ (1, 1), (2, 2), (3, 3) },A,B) ac-
cepts the same relation.

5 Closure Properties
After having introduced the basic primitives, we turn to
composition and transitive closure.

Definition 5.1. Given tree automata A and B, Δ𝜖 (A,B)
is the set of 𝜖-transitions; defined by the inference rules
in Figure 1.

First we recall the result of [8, Lemma 4.2]. Lemma 5.2
below is presented as a definition in [3, 4].

Lemma 5.2. Δ𝜖 (A,B) = {(𝑝, 𝑞) | 𝑝 →∗
A 𝑡 →∗B 𝑞 for some

ground term 𝑡}. □

Example 5.3. For the (anchored) GTT G = (A,B) of Ex-
ample 4.6 the set Δ𝜖 (A,B) consists of the following six
𝜖-transitions:

0 ; 4 (0 A← a→B 4)
1 ; 4 (1 A← a→B 4)
0 ; 1 (0 A← b→B 1)
0 ; 2 (0 A← b→B 2)
0 ; 3 (0 A← f (0) ; f (4) →B 3)
2 ; 3 (2 A← f (1) ; f (4) →B 3)

Since G does not contain 𝜖-transitions, only the congruence
rule [c] is used here.

Lemma 5.4. Anchored GTT relations are effectively closed
under composition. ✓

Proof. Let P1 = (𝑄1
2,A1,B1) and P2 = (𝑄2

2,A2,B2) be pair
automata (operating on terms over the same signature). We
construct the pair automaton P = (𝑄2,A1,B2) with

𝑄2 = 𝑄1
2 ◦ Δ𝜖 (B1,A2) ◦𝑄2

2

We claim that 𝐿(P) = 𝐿(P1) ◦ 𝐿(P2). First let (𝑠, 𝑡) ∈ 𝐿(P).
We have 𝑠 →∗A1

𝑝 and 𝑡 →∗B2 𝑞 for some (𝑝, 𝑞) ∈ 𝑄2. The

definition of 𝑄2 yields states 𝑝 ′ and 𝑞′ such that (𝑝, 𝑝 ′) ∈
𝑄1
2 , (𝑝 ′, 𝑞′) ∈ Δ𝜖 (B1,A2), and (𝑞′, 𝑞) ∈ 𝑄2

2 . According to
Lemma 5.2 there exists a ground term 𝑢 such that 𝑢 →∗B1 𝑝

′

and 𝑢 →∗A2
𝑞′. Hence (𝑠,𝑢) ∈ 𝐿(P1) and (𝑢, 𝑡) ∈ 𝐿(P2) and

thus (𝑠, 𝑡) ∈ 𝐿(P1) ◦ 𝐿(P2).
For the converse, let (𝑠, 𝑡) ∈ 𝐿(P1) ◦𝐿(P2). So there exists

a ground term 𝑢 such that (𝑠,𝑢) ∈ 𝐿(P1) and (𝑢, 𝑡) ∈ 𝐿(P2).
Hence there are pairs (𝑝1, 𝑞1) ∈ 𝑄1

2 and (𝑝2, 𝑞2) ∈ 𝑄2
2 such

that 𝑠 →∗A1
𝑝1, 𝑢 →∗B1 𝑞1, 𝑢 →∗A2

𝑝2, and 𝑡 →∗B2 𝑞2.
Lemma 5.2 yields (𝑞1, 𝑝2) ∈ Δ𝜖 (B1,A2). Hence (𝑝1, 𝑞2) ∈ 𝑄2
and therefore (𝑠, 𝑡) ∈ 𝐿(P). □

Lemma 5.5. Anchored GTT relations are effectively closed
under transitive closure. ✓

Proof. Let P = (𝑄2,A,B) be a pair automaton.We construct
the pair automaton P+ = (Δ+ (P),A,B) where Δ+ (P) is
the binary relation on states defined by the inference rules
in Figure 2. We claim that 𝐿(P+) = 𝐿(P)+. From the first
inference rule we immediately obtain 𝐿(P) ⊆ 𝐿(P+). The
second inference rule, together with the definition of 𝑄2
in the proof of Lemma 5.4, yields 𝐿(P+) ◦ 𝐿(P+) ⊆ 𝐿(P+).
Hence 𝐿(P)+ ⊆ 𝐿(P+).
For the converse, let (𝑠, 𝑡) ∈ 𝐿(P+). So there exists a pair

𝑝 ; 𝑞 such that 𝑠 →∗A 𝑝 and 𝑡 →∗B 𝑞. We prove (𝑠, 𝑡) ∈
𝐿(P)+ by induction on the derivation of 𝑝 ; 𝑞. If (𝑝, 𝑞) ∈ 𝑄2
then (𝑠, 𝑡) ∈ 𝐿(P). Suppose 𝑝 ; 𝑝 ′, (𝑝 ′, 𝑞′) ∈ Δ𝜖 (B,A),
and 𝑞′ ; 𝑞. According to Lemma 5.2 there exists a ground
term 𝑢 such that 𝑢 →∗B 𝑝 ′ and 𝑢 →∗A 𝑞′. The induction
hypothesis yields (𝑠,𝑢) ∈ 𝐿(P)+ and (𝑢, 𝑡) ∈ 𝐿(P)+. Hence
also (𝑠, 𝑡) ∈ 𝐿(P)+. □

Example 5.6. For the pair automaton P = (𝑄2,A,B) asso-
ciated with the anchored GTT G = (A,B) of Example 4.6
we have 𝑄2 = { (1, 1), (2, 2), (3, 3) }. Moreover Δ𝜖 (B,A) =
Δ𝜖 (A,B)− = { (4, 0), (4, 1), (1, 0), (2, 0), (3, 0), (3, 2) } accord-
ing to the computation in Example 5.3. Hence we obtain
the pair automaton P+ = (Δ+ (P),A,B) with Δ+ (P) =

{ (1, 1), (2, 2), (3, 3), (3, 2) }. We have g(a, b) →𝜖 f (a) →𝜖 b
and the pair (g(a, b), b) is accepted by P+: g(a, b) →∗A 3
and b→B 2 with (3, 2) ∈ Δ+ (P). Furthermore, g(a, b) →𝜖

f (a) → f (b) but g(a, b) →+𝜖 f (b) does not hold, and one
readily checks that the pair (g(a, b), f (b)) is not accepted by
P+.

Two further closure operations on anchored GTT relations
are inverse and union. Recall that GTT relations are not
closed under union.

Lemma 5.7. Anchored GTT relations are effectively closed
under inverse and union. ✓✓

Proof. Given a pair automaton P = (𝑄2,A,B), we have
𝐿(P)− = 𝐿(P−) for the pair automaton P− = (𝑄−2 ,B,A).
Here 𝑄−2 = { (𝑞, 𝑝) | (𝑝, 𝑞) ∈ 𝑄2 }. Given pair automata
P1 = (𝑄1

2,A1,B1) and P2 = (𝑄2
2,A2,B2) without common

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/LV_to_GTT.html#lem:agtt_grrstep
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#lem:pair_comp_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#lem:pair_trancl_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#lem:converse_pair_at_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/AGTT.html#lem:AGTT_union_sound
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𝑞 A← 𝑝 𝑝 ; 𝑟

𝑞 ; 𝑟
[a]

𝑝 ; 𝑞 𝑞 →B 𝑟

𝑝 ; 𝑟
[b]

𝑝 A← 𝑓 (𝑝1, . . . , 𝑝𝑛) 𝑝1 ; 𝑞1 · · · 𝑝𝑛 ; 𝑞𝑛 𝑓 (𝑞1, . . . , 𝑞𝑛) →B 𝑞

𝑝 ; 𝑞
[c]

Figure 1. Δ𝜖 (A,B): 𝜖-transitions for (anchored) GTT composition.

(𝑝, 𝑞) ∈ 𝑄2

𝑝 ; 𝑞

𝑝 ; 𝑞 (𝑞, 𝑞′) ∈ Δ𝜖 (B,A) 𝑞′ ; 𝑟

𝑝 ; 𝑟 ✓

Figure 2. Δ+ (P): 𝜖-transitions for transitive closure of pair automata.

states, 𝐿(P1) ∪ 𝐿(P2) = 𝐿(P) for the pair automaton P =

(𝑄2
1 ∪𝑄2

2,A1 ∪ A2,B1 ∪ B2). □

Lemma 5.8. The composition of an anchored GTT relation
and a GTT relation is an anchored GTT relation. ✓✓

Proof. Let P = (𝑄2,A1,B1) be a pair automaton and G =

(A2,B2) a GTT. Without loss of generality we assume that
P and G do not share states. Define the pair automaton

P ′ = (𝑄2,A1,B1 ∪ Δ𝜖 (A2,B1) ∪ B2)

We claim that 𝐿(P ′) = 𝐿(P) ◦ 𝐿(G). First let (𝑠, 𝑡) ∈ 𝐿(P ′).
So 𝑠 →∗A1

𝑝 and 𝑡 →∗B′ 𝑞 with (𝑝, 𝑞) ∈ 𝑄2 and B ′ abbreviat-
ing B1 ∪ Δ𝜖 (A2,B1) ∪ B2. Because P and G do not share
states, the sequence 𝑡 →∗B′ 𝑞 can be rearranged as follows:

𝑡 = 𝐶 [𝑡1, . . . , 𝑡𝑛] →∗B2 𝐶 [𝑞1, . . . , 𝑞𝑛]
→∗Δ𝜖 (A2,B1) 𝐶 [𝑟1, . . . , 𝑟𝑛] →

∗
B1 𝑞

Here 𝐶 is a multi-hole context with 𝑛 ⩾ 0 holes. Using
Lemma 5.2 we obtain ground terms 𝑢1, . . . , 𝑢𝑛 such that
𝑢𝑖 →∗A2

𝑞𝑖 and 𝑢 →∗B1 𝑟𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛. Define the term
𝑢 = 𝐶 [𝑢1, . . . , 𝑢𝑛]. We have 𝑢 →∗B1 𝐶 [𝑟1, . . . , 𝑟𝑛] →

∗
B1 𝑞 and

thus (𝑠,𝑢) ∈ 𝐿(P). Furthermore, 𝑢 →∗A2
𝐶 [𝑞1, . . . , 𝑞𝑛] and

thus also (𝑢, 𝑡) ∈ 𝐿(G). Hence (𝑠, 𝑡) ∈ 𝐿(P) ◦ 𝐿(G).
For the converse direction, let (𝑠, 𝑡) ∈ 𝐿(P) and (𝑡,𝑢) ∈

𝐿(G). So 𝑠 →∗A1
𝑝 and 𝑡 →∗B1 𝑞 with (𝑝, 𝑞) ∈ 𝑄2. More-

over, there exists a multi-hole context 𝐶 with 𝑛 ⩾ 0 holes,
terms 𝑡1, . . . , 𝑡𝑛, 𝑢1, . . . , 𝑢𝑛 , and states 𝑟1, . . . , 𝑟𝑛 such that 𝑡 =
𝐶 [𝑡1, . . . , 𝑡𝑛],𝑢 = 𝐶 [𝑢1, . . . , 𝑢𝑛], and 𝑡𝑖 →∗A2

𝑟𝑖 and𝑢𝑖 →∗B2 𝑟𝑖
for all 1 ⩽ 𝑖 ⩽ 𝑛. The sequence 𝑡 →∗B1 𝑞 can be written as
𝑡 = 𝐶 [𝑡1, . . . , 𝑡𝑛] →∗B1 𝐶 [𝑞1, . . . , 𝑞𝑛] →

∗
B1 𝑞 for some states

𝑞1, . . . , 𝑞𝑛 . By Lemma 5.2, 𝑟𝑖 → 𝑞𝑖 is a transition rule in
Δ𝜖 (A2,B1). Hence

𝑢 = 𝐶 [𝑢1, . . . , 𝑢𝑛] →∗B2 𝐶 [𝑟1, . . . , 𝑟𝑛]
→∗Δ𝜖 (A2,B1) 𝐶 [𝑞1, . . . , 𝑞𝑛] →

∗
B1 𝑞

and thus (𝑠,𝑢) ∈ 𝐿(P ′) as desired. □

The construction in the above proof gives rise to a modi-
fied composition operation ◦̂ on anchored GTT relations ⊲⊳1
and ⊲⊳2:

⊲⊳1 ◦̂ ⊲⊳2 = ⊲⊳1 ◦ (⊲⊳2)⩾⩾ ∪ (⊲⊳1)
⩾
⩾ ◦ ⊲⊳2 ✓

Here ◦ denotes standard relational composition. The con-
struction 𝐿(P) × 𝐿(G) ↦→ 𝐿(P ′) in the proof of Lemma 5.8
and its symmetric counterpart 𝐿(G)×𝐿(P) ↦→ 𝐿(P ′) in con-
nection with Lemma 5.7 ensure that ⊲⊳1 ◦̂ ⊲⊳2 is an anchored
GTT relation. We have (⊲⊳1 ◦̂ ⊲⊳2)⩾⩾ = (⊲⊳1)⩾⩾ ◦ (⊲⊳2)

⩾
⩾ .

GTT relations are closed under transitive closure, which
is the reason they were developed in the first place, but the
construction is different from the one for anchored GTT
relations and the correctness proof is considerably more
involved (cf. [3, 8]). The construction in [8] employs the
set Δ+ (A,B) consisting of 𝜖-transitions 𝑝 ; 𝑞 that are
computed by the inference rules in Figure 3. The transitive
closure of a GTT relation 𝐿(G) is then accepted by the GTT
G+ = (A+,B+) = (A ∪ Δ+ (B,A),B ∪ Δ+ (A,B)).
If we apply this construction to an anchored GTT G then

the anchored GTT relation 𝐿𝑎 (G+) associated with G+ satis-
fies

𝐿(G+) = 𝐿𝑎 (G+)⩾⩾ = (𝐿𝑎 (G)⩾⩾ )
+ = 𝐿(G)+

So the transitive closure of a GTT relation (𝐿(G)+) is the
multi-hole context closure of the transitive closure of its an-
chored counterpart (𝐿𝑎 (G+)⩾⩾ ). This result will be explained
below.

Lemma 5.9. Let G = (A,B) be an anchored GTT. If G+ =
(A+,B+) then 𝐿𝑎 (G+) = 𝐿(G)+ ◦ 𝐿𝑎 (G) ◦ 𝐿(G)+. ✓✓

The proof of Lemma 5.9 relies on two preliminary results.
The first one is from [8, Theorem 4.7].

Lemma 5.10. Let G = (A,B) be a GTT. Let G+ = (A+,B+).
If 𝑠 →∗A+ 𝑞 then 𝑡 →∗A 𝑞 for some ground term 𝑡 with (𝑠, 𝑡) ∈
𝐿(G)+. □

Lemma 5.11. Let G = (A,B) be a GTT. If G+ = (A+,B+)
then Δ𝜖 (A+,B+) = Δ+ (A,B). ✓

Proof. We first show Δ𝜖 (A+,B+) ⊆ Δ+ (A,B) via induction
on the relation ; defined by the inference rules in Figure 1.
We proceed by case analysis, so assume (𝑝, 𝑞) ∈ Δ𝜖 (A+,B+)
is derived from a congruence step [c]. Hence we obtain
(𝑝, 𝑞) ∈ Δ+ (A,B) by a congruence step [c] of Figure 3,
the fact that the constructions only add 𝜖-transitions, and
the induction hypothesis. Next assume that we derived
(𝑞, 𝑟 ) ∈ Δ𝜖 (A+,B+) by an 𝜖-step [a]. So 𝑝 →A+ 𝑞 and 𝑝 ; 𝑟 .
We haveA+ = A∪Δ+ (B,A). The result trivially follows for

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#ind:%CE%94_Atrans_set
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Lift_Root_Step.html#def:gcomp_rel
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_Compose.html#lem:gtt_comp'_alang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Lift_Root_Step.html#def:gcomp_rel
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Lift_Root_Step.html#def:gtrancl_rel
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_Transitive_Closure.html#lem:GTT_trancl_alang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_Transitive_Closure.html#lem:%CE%94_%CE%B5_tr_incl
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𝑞 A← 𝑝 𝑝 ; 𝑟

𝑞 ; 𝑟
[a]

𝑝 ; 𝑞 𝑞 →B 𝑟

𝑝 ; 𝑟
[b]

𝑝 ; 𝑞 𝑞 ; 𝑟

𝑝 ; 𝑟
[t]

𝑝 A← 𝑓 (𝑝1, . . . , 𝑝𝑛) 𝑝1 ; 𝑞1 · · · 𝑝𝑛 ; 𝑞𝑛 𝑓 (𝑞1, . . . , 𝑞𝑛) →B 𝑞

𝑝 ; 𝑞
[c]

Figure 3. Δ+ (A,B): 𝜖-transitions for GTT transitive closure.

𝑝 →A 𝑞. So let (𝑝, 𝑞) ∈ Δ+ (B,A). Hence (𝑞, 𝑝) ∈ Δ+ (A,B).
The induction hypothesis yields (𝑝, 𝑟 ) ∈ Δ+ (A,B) and there-
fore (𝑞, 𝑟 ) ∈ Δ+ (A,B) using the transitivity rule [t]. The
𝜖-step [b] case is obtained in the same way.

For the reverse inclusion we use induction on the relation
; defined by the inference rules in Figure 3 and argue in a
similar fashion. Hence Δ𝜖 (A+,B+) = Δ+ (A,B). □

Proof of Lemma 5.9. First let (𝑠, 𝑡) ∈ 𝐿𝑎 (G+). So there exists a
state 𝑞 such that 𝑠 →∗A+ 𝑞 and 𝑡 →∗B+ 𝑞. Lemma 5.10 yields a
ground term𝑢 such that𝑢 →∗A 𝑞 and (𝑠,𝑢) ∈ 𝐿(G)+. Applied
to G− = (B,A), Lemma 5.10 yields a ground term 𝑣 such
that 𝑣 →∗B 𝑞 and (𝑡, 𝑣) ∈ 𝐿(G−)+. Hence (𝑢, 𝑣) ∈ 𝐿𝑎 (G) and
(𝑣, 𝑡) ∈ 𝐿(G)+. Consequently, (𝑠, 𝑡) ∈ 𝐿(G)+◦𝐿𝑎 (G)◦𝐿(G)+.
For the other direction we apply the modified composition

operation ◦̂ with ⊲⊳1 = ⊲⊳2 = 𝐿𝑎 (G+) and obtain

𝐿𝑎 (G+) ◦ 𝐿(G+) ∪ 𝐿(G+) ◦ 𝐿𝑎 (G+) ⊆ 𝐿𝑎 (𝐺+) ◦̂ 𝐿𝑎 (𝐺+)
= 𝐿𝑎 (G+)

with the help of Lemma 5.11. Note that we do not get equality,
as one direction in the proof of Lemma 5.8 requires disjoint
state sets. Since 𝐿𝑎 (G) ⊆ 𝐿𝑎 (G+) we also have

𝐿𝑎 (G) ◦ 𝐿(G+) ∪ 𝐿(G+) ◦ 𝐿𝑎 (G) ⊆ 𝐿𝑎 (G+)

At this point we can use the following well-known result in
Kleene algebra

𝐴 ⊆ 𝑋 ∧ 𝐵 ◦ 𝑋 ⊆ 𝑋 ∧ 𝑋 ◦𝐶 ⊆ 𝑋 =⇒ 𝐵∗ ◦𝐴 ◦𝐶∗ ⊆ 𝑋

with 𝐴 = 𝐿𝑎 (G), 𝐵 = 𝐶 = 𝐿(G), and 𝑋 = 𝐿𝑎 (G+). Since
𝐿(G)∗ = 𝐿(G)+, we are done. □

The (constructive proof of) the above lemma gives rise
to the following modified transitive closure operation +̂ on
anchored GTT relations ⊲⊳ :

⊲⊳+̂ = (⊲⊳⩾⩾)
+◦ ⊲⊳ ◦(⊲⊳⩾⩾)

+ ✓

We have (⊲⊳+̂)⩾⩾ = (⊲⊳⩾⩾)+.

Example 5.12. Computing G+ = (A+,B+) for the GTT
G = (A,B) of Example 4.6 adds the pairs of Δ+ (B,A) =
{ (4, 0), (4, 1), (1, 0), (2, 0), (3, 0), (3, 2) } as 𝜖-transitions to A
and the pairs of Δ+ (A,B) = Δ+ (B,A)− to B. We have
(g(a, b), f (b)) ∈ 𝐿𝑎 (G+) as g(a, b) →∗A+ 3 and f (b) →B+
f (1) →B+ f (4) →B+ 3. The term pair (f (a), f (b)) does not
belong to 𝐿𝑎 (G+).

The final operation on anchored GTT relations that we
consider is complement. This requires the determinization
of pair automata.

Lemma 5.13. For every pair automaton P = (𝑄2,A,B)
there exist deterministic tree automataA ′ andB ′ and a binary
relation 𝑄𝑑

2 such that 𝐿(P) = 𝐿(𝑄𝑑
2 ,A ′,B ′). ✓

Proof. We use the subset construction to determinize A and
B into equivalent deterministic tree automataA ′ and B ′. As
the binary state relation we take 𝑄𝑑

2 = {(𝑋,𝑌 ) | (𝑝, 𝑞) ∈ 𝑄2
for some 𝑝 ∈ 𝑋 ⊆ 𝑄A and 𝑞 ∈ 𝑌 ⊆ 𝑄B}. We have 𝐿(P) =
𝐿(𝑄𝑑

2 ,A ′,B ′) by the correctness of the subset construction.
□

Lemma 5.14. Anchored GTT relations are effectively closed
under complement. ✓✓✓

Proof. Let G be an anchored GTT. According to Lemma 5.13
we may assume that 𝐿(G) is accepted by a deterministic pair
automaton P = (𝑄2,A,B). Without loss of generality we
may further assume thatA and B do not share any state and
are completely defined. It follows that 𝐿(P)𝑐 = (𝑄𝑐

2,A,B)
where 𝑄𝑐

2 = (𝑄A ×𝑄B) \𝑄2. □

It is worth noting that GTT relations are not closed under
complement [3, Exercise 3.4].

Example 5.15. For the pair automaton P = (𝑄2,A,B) as-
sociated with the anchored GTT G = (A,B) of Example 4.6
we have 𝑄2 = { (1, 1), (2, 2), (3, 3) }. Determinizing A yields
the tree automaton A ′ with the following transition rules:

a→ 𝐴 f (𝑋 ) →
{
𝐶 if 𝑋 = 𝐴

𝐵 otherwise

b→ 𝐵 g(𝑋,𝑌 ) →
{
𝐷 if 𝑋 = 𝐴

𝐵 otherwise

for all 𝑋,𝑌 ∈ {𝐴, 𝐵,𝐶, 𝐷 }. Here 𝐴 = {0, 1}, 𝐵 = {0}, 𝐶 =

{0, 2}, and 𝐷 = {0, 3}. Next we rename (1 ↦→ 5, 2 ↦→ 6,
3 ↦→ 7) the states of B and apply determinization to obtain
the tree automaton B ′ consisting of the following transition
rules:

a→ 𝐸 b→ 𝐹 f (𝑋 ) →
{
𝐺 if 𝑋 = 𝐸

𝐻 otherwise
g(𝑋,𝑌 ) → 𝐻

for all 𝑋,𝑌 ∈ {𝐸, 𝐹,𝐺, 𝐻 }. Here 𝐸 = {4}, 𝐹 = {5, 6}, 𝐺 =

{7}, and𝐻 = ∅. The transition rules for g are added to make

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Lift_Root_Step.html#def:gtrancl_rel
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#lem:pair_automaton_det_lang_sound_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Ground_Terms.html#def:gterms
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Complement.html#def:completely_defined_on
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Pair_Automaton.html#lem:pair_automaton_complement_sound_complete
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B ′ completely defined. Now the complement 𝐿(G)𝑐 of 𝐿(G)
is accepted by the pair automaton (𝑄 ′2,A ′,B ′) with
𝑄 ′2 = ({𝐴, 𝐵,𝐶, 𝐷 } × {𝐸, 𝐹,𝐺, 𝐻 }) \ { (𝐴, 𝐹 ), (𝐶, 𝐹 ), (𝐷,𝐺) }

The final closure property of anchored GTT relations that
we mention is intersection.

Lemma 5.16. Anchored GTT relations are effectively closed
under intersection.

Proof. This follows from Lemmata 5.7 and 5.14. □

A more efficient product construction, which avoids the
subset construction of the complement, is easily conceived.

6 Regular Relations
We continue on the level of regular relations. The following
lemma takes care of transforming anchored GTT relations
into binary regular (i.e., RR2) relations.

Lemma 6.1. Every anchored GTT relation is an RR2 relation.
✓

Proof. The first step in the (formalized) proof of [8, The-
orem 5.3], where it is shown that GTT relations are RR2
relations, constructs an RR2 automaton for a relation G𝜖 .
Since G𝜖 is an anchored GTT relation, the result follows. □

We illustrate the underlying (product) construction on our
leading example.

Example 6.2. For the anchored GTT G of Example 4.6
we obtain the RR2 automaton ({a, b, f, g} (2) , 𝑄,𝑄 𝑓 ,Δ) with
𝑄 = ({0, 1, 2, 3,⊥}×{1, 2, 3, 4,⊥})\{⊥⊥},𝑄 𝑓 = {11, 22, 33},
and Δ consisting of the following transition rules:

aa→ 04 ba→ 04 fa(0⊥) → 04 a⊥ → 0⊥
aa→ 14 bb→ 01 fa(1⊥) → 24 b⊥ → 0⊥
ab→ 01 bb→ 02 fb(0⊥) → 01 ⊥b→ ⊥1
ab→ 02 af (⊥4) → 03 fb(0⊥) → 02 a⊥ → 1⊥
ab→ 11 af (⊥4) → 13 fb(1⊥) → 21 ⊥a→ ⊥4
ab→ 12 bf (⊥4) → 03 fb(1⊥) → 22 ⊥b→ ⊥2

ga(0⊥, 0⊥) → 04 gf (04, 0⊥) → 03
ga(1⊥, 0⊥) → 34 gf (14, 0⊥) → 33
gb(0⊥, 0⊥) → 01 g⊥(0⊥, 0⊥) → 0⊥
gb(0⊥, 0⊥) → 02 g⊥(1⊥, 0⊥) → 3⊥
gb(1⊥, 0⊥) → 31 f⊥(0⊥) → 0⊥
gb(1⊥, 0⊥) → 32 f⊥(1⊥) → 2⊥
⊥f (⊥4) → ⊥3 ff(04) → 03 ff(14) → 23

We have

⟨g(a, f (b)), f (a)⟩ = gf (aa, f⊥(b⊥)) →∗Δ gf (14, f⊥(0⊥))
→Δ gf (14, 0⊥) →Δ 33

The various context closure operations are taken care of
in the following general result.

Lemma 6.3. If ⊲⊳ is an RR2 relation then ⊲⊳𝑛𝑝 is an RR2 rela-
tion, for all 𝑛 ∈ {⩾, 1, > } and 𝑝 ∈ {⩾, 𝜖, > }. ✓✓✓✓✓
✓✓✓✓

Proof. Let A = (F (2) , 𝑄,𝑄 𝑓 ,Δ) be the RR2 automaton that
accepts ⊲⊳ . We add two new states ★ and ✓. In the former
the encoding of the identity relation on ground terms will be
accepted. The latter will serve as the unique final state. This is
achieved by extending Δwith the transitions 𝑓𝑓 (★, . . . ,★) →
★ for every 𝑓 ∈ F and𝑞 → ✓ for every𝑞 ∈ 𝑄 𝑓 . The resulting
automaton A ′ = (F (2) , 𝑄 ∪ {✓,★}, {✓ },Δ′) is equivalent
to A and the starting point for the various context closure
operations. We present a few illustrative cases.
• For instance, for 𝑛 = 1 and 𝑝 = ⩾ we extend Δ with all
rules of the form 𝑓𝑓 (★, . . . ,★,✓,★, . . . ,★) → ✓.
• For 𝑛 = 𝑝 = ⩾ we add 𝑓𝑓 (𝑞1, . . . , 𝑞𝑛) → ✓ for all
𝑓 ∈ F and 𝑞1, . . . , 𝑞𝑛 ∈ {✓,★}.
• For 𝑝 = > we need a new final state ✓′ to ensure that
the surrounding context is non-empty:

𝑓𝑓 (★, . . . ,★,✓,★, . . . ,★) → ✓′

𝑓𝑓 (★, . . . ,★,✓′,★, . . . ,★) → ✓′

This is sufficient for 𝑛 = 1. For 𝑛 = > we add the single
𝜖-transition ✓ → ★ and for 𝑛 = ⩾ we additionally add
a new final state ★′ together transition rules ensuring
that the accepted relation is reflexive:

𝑓𝑓 (★′, . . . ,★′) → ★′

Full details can be found in the formalization. □

Example 6.4. The following transition rules are added to
the RR2 automaton of Example 6.2 to model the relation
𝐿𝑎 (G)>> = −→¤∥ >𝜖 :

aa→ ★ 11→ ✓ ff(✓) → ✓′ ff(✓′) → ✓′

bb→ ★ 22→ ✓ gg(✓,★) → ✓′ gg(✓′,★) → ✓′

ff(★) → ★ 33→ ✓ gg(★,✓) → ✓′ gg(★,✓′) → ✓′

✓ → ★ gg(★,★) → ★

The encoding of the term pair (g(f (a), f (a)), g(b, f (b))) is
accepted:

gg(fb(a⊥),ff(ab)) → gg(fb(1⊥),ff(11)) → gg(22,ff(✓))
→ gg(✓,✓′) → gg(★,✓′) → ✓′

In [11] formalizations of the following results are reported.
The first result is well-known. The formalization is based
on the direct construction by Comon [2]. The second result
goes back to a technical report by Dauchet and Tison [7].

Theorem 6.5. The sets NF(R) for every left-linear TRS R
and INF⊲⊳ for every RR2 relation ⊲⊳ are regular. □

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:GTT_to_RR2_root
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:root_single_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:root_strictparallel_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:reflcl_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:parallel_closure_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:ctxt_closure_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:mctxt_closure_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:nhole_ctxt_closure_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:nhole_mctxt_closure_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html#lem:nhole_mctxt_reflcl_automaton
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Table 1. Binary predicates as RR2 relations.

→ = (→𝜖 )1⩾ ← = ((→𝜖 )1⩾)−

→𝜖 = (→𝜖 )1𝜖 →+ = ((→𝜖 )+̂)>⩾
→>𝜖 = (→𝜖 )1> →∗>𝜖 = ((→𝜖 )+̂)⩾>
−→∥ = (→𝜖 )⩾⩾ →∗ = ((→𝜖 )+̂)⩾⩾
→+𝜖 = ((→𝜖 )+)1𝜖 ↔∗ = (((→𝜖 )− ∪ →𝜖 )+̂)⩾⩾
↔ = ((→𝜖 )− ∪ →𝜖 )1⩾ ↓ = ((→𝜖 )+̂ ◦̂ (→−𝜖 )+̂)⩾⩾
→! = ((→𝜖 )+̂)⩾⩾ ∩ (T (F ) × NF)

We present two more operations that turn regular sets
into RR2 relations. Here =𝑇 consists of all pairs (𝑡, 𝑡) with
𝑡 ∈ 𝑇 . The easy proofs are omitted.

Lemma 6.6. If 𝑇 ⊆ T (F ) is a regular set of ground terms
then 𝑇 ×𝑇 and =𝑇 are RR2 relations. ✓✓

We summarize the results obtained so far by listing all
formalized closure operations for the predicates in the first-
order theory of rewriting by means of the grammar below.
Here 𝐴 are anchored GTT relations, 𝑅 are RR2 relations, and
𝑇 are regular sets of ground terms:

𝐴 ::=→𝜖 | 𝐴− | 𝐴 ∪𝐴 | 𝐴+ | 𝐴+̂ | 𝐴 ◦𝐴 | 𝐴 ◦̂ 𝐴 | 𝐴𝑐 | 𝐴 ∩𝐴
𝑅 ::= 𝐴 | 𝑅𝑛

𝑝 | 𝑅 ∪ 𝑅 | 𝑅 ∩ 𝑅 | 𝑅− | 𝑇 ×𝑇 | =𝑇
𝑇 ::= T (F ) | NF | INF𝑅 | 𝑇 ∪𝑇 | 𝑇 ∩𝑇 | 𝑇 𝑐 | 𝜋1 (𝑅) | 𝜋2 (𝑅)
𝑛 ::= ⩾ | 1 | > 𝑝 ::= ⩾ | 𝜖 | >

In Table 1 we show how some of the binary predicates in
the first-order theory of rewriting are represented as RR2
relations using the above constructs.

The logical structure of formulas in the first-order theory
of rewriting is taken care of by the closure operations on
regular relations mentioned in Section 2.3. These have been
formalized in the setting of [8]. However, since Isabelle’s
code generation facility cannot automatically compute the
sets used in the underlying automata constructions, the for-
malization of projection and cylindrification in [8] is not
executable. We present an executable formalization of these
results, which builds lists of rules and epsilon transition
directly.

Theorem 6.7. The class of regular relations is effectively
closed under projection, cylindrification, and permutation. ✓
✓

7 Example
Stemming from the constructions of (→𝜖 )𝑛𝑝 , relations such
as →∗>𝜖 can be used to model properties which were not
expressible in FORT. One example of such a formula is the

root-stability predicate RS(𝑡) ⇐⇒ ∀𝑢 (𝑡 →∗>𝜖 𝑢 =⇒
¬∃ 𝑣 (𝑢 →𝜖 𝑣)), which can be modeled as described below.

We construct automata for the subterms of the formula in
a bottom up fashion. From Lemma 4.5 it follows that for any
linear variable-separated TRS we can construct an anchored
GTT 𝐺1 accepting the language:

GTT 𝐺1 𝐿𝑎 (𝐺1) = { (𝑢, 𝑣) | 𝑢 →𝜖 𝑣 }

Since anchored GTT relations are also RR2 relations we can
construct an equivalent RR2 automaton 𝐴1:

RR2 𝐴1 = (𝐺1)1𝜖 𝐿(𝐴1) = { ⟨𝑢, 𝑣⟩ | 𝑢 →𝜖 𝑣 }

The second projection (Π2) to construct 𝐴2 followed by the
complement construction results in the RR1 automaton 𝐴3,
which represents the right-hand side of the implication:

RR1 𝐴2 = Π2 (𝐴1) 𝐿(𝐴2) = { ⟨𝑢⟩ | ∃ 𝑣 (𝑢 →𝜖 𝑣) }
RR1 𝐴3 = (𝐴2)𝑐 𝐿(𝐴3) = { ⟨𝑢⟩ | ¬ ∃ 𝑣 (𝑢 →𝜖 𝑣) }

Reusing the GTT𝐺1 with closure under +̂ followed by an ap-
plication of Lemma 6.3, the RR2 automaton𝐴4 is constructed,
representing the left-hand side of the implication:

GTT 𝐺2 = (𝐺1)+̂ 𝐿𝑎 (𝐺2) = { (𝑢, 𝑣) | 𝑢 →∗ · →𝜖 · →∗ 𝑣 }
RR2 𝐴4 = (𝐺2)⩾> 𝐿(𝐴4) = { ⟨𝑡,𝑢⟩ | 𝑡 →∗>𝜖 𝑢 }

To then represent the implication we first take the com-
plement of 𝐴4, resulting in 𝐴5. Before the conjunction in
¬ (𝑡 →∗>𝜖 𝑢) ∨ ¬∃ 𝑣 (𝑢 →𝜖 𝑣) can be constructed, the ari-
ties of the RR1 automaton 𝐴3 and RR2 automaton 𝐴5 have
to match. With this goal 𝐴3 is cylindrified (𝐶1) to construct
the RR2 𝐴6. Here care has to be taken that not only the ari-
ties match, but also that terms, taking the place of variables
shared by both formulas, have to be at the same position
𝑖 in the encoding ⟨𝑡1, . . . , 𝑡𝑖 , . . . , 𝑡𝑛⟩ of both automata. After
this, the union with 𝐴5 results in the RR2 automaton 𝐴7 that
models modeling the implication:

RR2 𝐴5 = (𝐴4)𝑐 𝐿(𝐴5) = { ⟨𝑡,𝑢⟩ | ¬ (𝑡 →∗>𝜖 𝑢) }
RR2 𝐴6 = 𝐶1 (𝐴3) 𝐿(𝐴6) = { ⟨𝑡,𝑢⟩ | ¬ ∃ 𝑣 (𝑢 →𝜖 𝑣) }
RR2 𝐴7 = 𝐴5 ∪𝐴6

𝐿(𝐴7) = { ⟨𝑡,𝑢⟩ | ¬ (𝑡 →∗>𝜖 𝑢) ∨ ¬∃ 𝑣 (𝑢 →𝜖 𝑣) }
= { ⟨𝑡,𝑢⟩ | 𝑡 →∗>𝜖 𝑢 =⇒ ¬∃ 𝑣 (𝑢 →𝜖 𝑣) }

Similarly to the implication, the universal quantifier is not di-
rectly modeled. To match the currently constructed formula
to the logically equivalent formula

¬∃𝑢 (¬ (𝑡 →∗>𝜖 𝑢 =⇒ ¬∃ 𝑣 (𝑢 →𝜖 𝑣)))

the complement operation followed by the first projection
and another complement operation are used. This results in

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/RRn_Automata.html#lem:pair_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/RRn_Automata.html#lem:diagonal_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/RRn_Automata.html#def:collapse_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/RRn_Automata.html#lem:drop_automaton_reg
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the RR1 automaton 𝐴10:

RR2 𝐴8 = (𝐴7)𝑐

𝐿(𝐴8) = { ⟨𝑡,𝑢⟩ | ¬ (𝑡 →∗>𝜖 𝑢 =⇒ ¬∃ 𝑣 (𝑢 →𝜖 𝑣)) }
RR1 𝐴9 = Π1 (𝐴8)

𝐿(𝐴9) = { ⟨𝑡⟩ | ∃𝑢 (¬ (𝑡 →∗>𝜖 𝑢 =⇒ ¬∃ 𝑣 (𝑢 →𝜖 𝑣))) }
RR1 𝐴10 = (𝐴9)𝑐

𝐿(𝐴10) = { ⟨𝑡⟩ | ∀𝑢 (𝑡 →∗>𝜖 𝑢 =⇒ ¬∃ 𝑣 (𝑢 →𝜖 𝑣)) }
As can be clearly seen, the RR1 automaton 𝐴10 accepts the
language 𝐿(𝐴10) = RS.
This example also shows how automata relate to indi-

vidual subformulas, and how the closure properties can be
used in a stepwise construction. The approach of relating
formulas to automata, and annotating individual steps by
the used properties, will be adapted into a formal certificate
language. In turn this can be checked by a trustworthy tool,
code generated from the executable formalization. This is
ongoing work.

8 Formalization
In this section we discuss some aspects of our formalization.
Since we deal exclusively with finite automata over finite
terms, we decided to use finite sets as our foundation:

typedef ′a fset = {A :: ′a set . finite A}
morphisms fset Abs_fset by auto

setup_lifting type_definition_fset

The fset type is part of the standard HOL library2 but several
important operations and results on relations are absent,
including transitive closure and relational composition. We
addressed this issue with the help of the lifting and transfer
package by Huffman and Kunčar [9]. This package provides a
modular theory that provides the functionality lift_definition
to lift definitions of related types, in our setting from set to
fset. For this purpose, definitions must be shown to preserve
finiteness. Most of the required constructions and lemmata
could without further ado be converted with the help of this
package. Problems emerged with the lifting of

⋃
the big

union on sets. Most lemmata for
⋃

were derived from the
complete lattice type class:

class complete_lattice = lattice + Inf + Sup + bot + top +
assumes Inf_lower : x ∈ A =⇒.

A ≤ x
and Inf_greatest: (∧x . x ∈ A =⇒ z ≤ x) =⇒ z ≤ .

A
and Sup_upper : x ∈ A =⇒ x ≤ ⊔

A
and Sup_least: (∧x . x ∈ A =⇒ x ≤ z) =⇒ ⊔

A ≤ z
and Inf_empty [simp]: . {} = ⊤
and Sup_empty [simp]: ⊔ {} = ⊥

However, finite sets in general do not possess a ⊤ element
and therefore cannot be made an instance of this class. We
solved this in an ad-hoc fashion by reproving the required
2http://isabelle.in.tum.de/library/HOL/HOL-Library/FSet.html

lemmata for fset’s big union. A better solution would be to
split the class into more fine-grained parts, so that lemmata
not requiring a ⊤ element can be used independently. We
intend do this in the near future.

Tree automata in our setting are represented as follows:

datatype ( ′q, ′f ) ta_rule = TA_rule ′f ( ′q list) ′q
datatype ( ′q, ′f ) ta =

TA (( ′q, ′f ) ta_rule fset) (( ′q × ′q) fset)
The states of the tree automaton are left implicit as they can
be computed from the transition rules and epsilon transitions.
Since we use finite sets, it follows that the set of states of a
tree automaton is always finite. Note that we did not include
final states in our definition. This allows us to create more
general lemmata for languages associatedwith tree automata.
However, we provide a wrapper called reg that deals with
final states:

datatype ( ′q, ′f ) reg = Reg ( ′q fset) (( ′q, ′f ) ta)
This is more convenient when dealing with tree automata
constructions which work on final states directly.

Another reason for adopting the finite set representation
for tree automata is to ensure that the formalization more
accurately reflects the results on tree automata from the
literature. Additionally, it allows more unconditional simpli-
fication lemmata. One of these is the correctness of the rela-
beling function which maps the states of a tree automaton to
natural numbers without changing the accepted language:

lemma gta_lang (relabel_Q 𝑓 Q A) (relabel_ta A) =
gta_lang Q A

The concrete implementation is listed in Figure 4. The func-
tion map_fset_to_nat is injective, a necessary condition for
preserving the accepted language, only if sets are finite.

It is worth mentioning the tree automata formalization by
Lammich [10], which covers basic results on tree automata.
It does not include GTTs, RR𝑛 automata, and the various
context closures of regular languages, which is the reason
why we decided to use the IsaFoR formalization of tree au-
tomata as our base. It covers all results in [10] and allows to
reason about mixed terms (i.e. terms in T (F ,Q)). We define
(anchored) ground tree transducers
type_synonym ( ′q, ′f ) gtt = ( ′q, ′f ) ta × ( ′q, ′f ) ta
and their respective languages over ground terms

inductive gtt_accept :: ( ′q, ′f ) gtt⇒ ′f gterm
⇒ ′f gterm⇒ bool for G where
gtt_accept G t t
| q |∈| gta_der (fst G) s =⇒ q |∈| gta_der (snd G) t

=⇒ gtt_accept G s t
| length ss = length ts =⇒∀ i < length ss. gtt_accept G
(ss ! i) (ts ! i) =⇒ gtt_accept G (GFun f ss) (GFun f ts)

definition agtt_lang :: ( ′q, ′f ) gtt⇒ ′f gterm rel where
agtt_lang G = {(t, u) |t u q. q |∈| gta_der (fst G) t ∧
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lift_definition sorted_list_of_fset :: ( ′a :: linorder) fset⇒ ′a list is sorted_list_of_set

definition map_fset_to_nat :: ( ′a :: linorder) fset⇒ ′a⇒ nat where
map_fset_to_nat X = (_x . the (mem_idx x (sorted_list_of_fset X )))

definition relabel_ta :: ( ′q :: linorder, ′f ) ta⇒ (nat, ′f ) ta where
relabel_ta A = fmap_states_ta (map_fset_to_nat (Q A)) A

definition relabel_Q 𝑓 :: ( ′q :: linorder) fset⇒ ( ′q :: linorder, ′f ) ta⇒ nat fset where
relabel_Q 𝑓 Q A = map_fset_to_nat (Q A) |‘ | (Q |∩| Q A)

Figure 4. Relabeling of tree automata.

q |∈| gta_der (snd G) u}
We now turn our attention to the closure properties of

(anchored) GTTs. Most of these require that the state sets of
the participating GTTs are disjoint. Proving properties that
require such invariants involves additional work. Hence we
removed the necessity of this invariant by the equivalent
(Lemma 4.4) definition of pair automata (Definition 4.3).

definition pair_at_lang :: ( ′q, ′f ) gtt⇒ ( ′q × ′q) fset⇒
′f gterm rel where
pair_at_lang G Q = {(s, t) | s t p q. q |∈| gta_der (fst G) s
∧ p |∈| gta_der (snd G) t ∧ (q, p) |∈| Q}

lemma agtt_lang G =

pair_at_lang G (fId_on (gtt_interface G))
lemma pair_at_lang G Q =

agtt_lang (pair_at_to_agtt ′G Q)
This leads to shorter and more elegant proofs. Moreover,
from the definition of agtt_lang it is not obvious that the
language is closed under complement. Looking at the pair
automata definition, it follows that the complement can be
constructed via determinization and complement of tree
automata.
Formalizing operations on multihole contexts proved to

be challenging. Multihole contexts are defined as follows:
datatype ( ′f , ′v) mctxt = MVar ′v | MHole
| MFun ′f (( ′f , ′v) mctxt list)

A multihole context is filled by partitioning the given term
list depending on the number of holes:
fun num_holes :: ( ′f , ′v) mctxt⇒ nat where

num_holes (MVar _) = 0 |
num_holes MHole = 1 |
num_holes (MFun _ ctxts) = sum_list
(map num_holes ctxts)

fun fill_holes :: ( ′f , ′v) mctxt⇒ ( ′f , ′v) Term.term list
⇒ ( ′f , ′v) Term.term where
fill_holes (MVar x) _ = Term.Var x |
fill_holes MHole [t] = t |
fill_holes (MFun f cs) ts = Fun f (map
(_ i. fill_holes (cs ! i)

(partition_by ts (map num_holes cs) ! i))
[0 ..< length cs])

Many proofs require (de)composing multihole contexts,
which is too complex for the automated tactics of Is-
abelle/HOL. This is due to the invariant, that the number of
holes of a multihole context must match the length of the
given list. Such proofs regularly exhibit similar structures.
These can be captured and extracted using higher-order pred-
icates. An example of such a higher-order predicate can be
seen in the following lemma proving function closure over
multihole context closed relations.

lemma (∧f n. (f , n) ∈ F =⇒ n ≠ 0 =⇒
P (GMFun f (replicate n GMHole))) =⇒ (∧C Ds.
P C =⇒ num_gholes C = length Ds =⇒
0 < num_gholes C =⇒∀D∈set Ds. P D =⇒
P (fill_gholes_gmctxt C Ds)) =⇒

function_closed F (gmctxtex_onp P R)
This allows us to prove function closure for different rela-
tions, by reasoning solely over the predicate. This greatly
improves the success rate of the automated proof tactics.
The rewrite relations are defined by restricting the rela-

tions from IsaFoR to ground terms:

definition grrstep :: ( ′f , ′v) trs⇒ ′f gterm rel where
grrstep R = inv_image (rrstep R) term_of_gterm

definition gnrrstep :: ( ′f , ′v) trs⇒ ′f gterm rel where
gnrrstep R = inv_image (nrrstep R) term_of_gterm

definition grstep :: ( ′f , ′v) trs⇒ ′f gterm rel where
grstep R = inv_image (rstep R) term_of_gterm

definition gpar_rstep :: ( ′f , ′v) trs⇒ ′f gterm rel where
gpar_rstep R = inv_image (par_rstep R) term_of_gterm

For a clear separation of the tree automata theory and the
decision procedure for the first-order theory of rewriting,
we abstract from the concrete constructions of relations. We
achieve this by defining primitives directly and interpret-
ing closure properties as operations on relations as seen in
Figure 5. This setting allows us to prove the correctness of
our decision procedure without any knowledge of tree au-
tomata. This means that we obtain a stronger result, namely
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primrec eval_gtt_rel :: ( ′f × nat) set⇒ ( ′f , ′v) trs list⇒ ftrs gtt_rel⇒ ′f gterm rel where
eval_gtt_rel F Rs (ARoot is) = Restr (grrstep (is_to_trs Rs is)) (T𝐺 F )
| eval_gtt_rel F Rs (GInv g) = prod .swap ‘ (eval_gtt_rel F Rs g)
| eval_gtt_rel F Rs (AUnion g1 g2) = (eval_gtt_rel F Rs g1) ∪ (eval_gtt_rel F Rs g2)
| eval_gtt_rel F Rs (ATrancl g) = (eval_gtt_rel F Rs g)+
| eval_gtt_rel F Rs (AComp g1 g2) = (eval_gtt_rel F Rs g1) O (eval_gtt_rel F Rs g2)
| eval_gtt_rel F Rs (GTrancl g) = gtrancl_rel F (eval_gtt_rel F Rs g)
| eval_gtt_rel F Rs (GComp g1 g2) = gcomp_rel F (eval_gtt_rel F Rs g1) (eval_gtt_rel F Rs g2)

primrec eval_rr1_rel :: ( ′f × nat) set⇒ ( ′f , ′v) trs list⇒ ftrs rr1_rel⇒ ′f gterm set
and eval_rr2_rel :: ( ′f × nat) set⇒ ( ′f , ′v) trs list⇒ ftrs rr2_rel⇒ ′f gterm rel where

eval_rr1_rel F Rs R1Terms = (T𝐺 F )
| eval_rr1_rel F Rs (R1Union R S) = (eval_rr1_rel F Rs R) ∪ (eval_rr1_rel F Rs S)
| eval_rr1_rel F Rs (R1Inter R S) = (eval_rr1_rel F Rs R) ∩ (eval_rr1_rel F Rs S)
| eval_rr1_rel F Rs (R1Diff R S) = (eval_rr1_rel F Rs R) − (eval_rr1_rel F Rs S)
| eval_rr1_rel F Rs (R1Proj n R) = (case n of 0⇒ fst ‘ (eval_rr2_rel F Rs R)

| _⇒ snd ‘ (eval_rr2_rel F Rs R))
| eval_rr1_rel F Rs (R1NF is) = NF (Restr (grstep (is_to_trs Rs is)) (T𝐺 F )) ∩ (T𝐺 F )
| eval_rr1_rel F Rs (R1Inf R) = {s. infinite (eval_rr2_rel F Rs R ‘‘ {s})}
| eval_rr2_rel F Rs (R2GTT_Rel A W X ) = lift_root_step F W X (eval_gtt_rel F Rs A)
| eval_rr2_rel F Rs (R2Inv R) = prod .swap ‘ (eval_rr2_rel F Rs R)
| eval_rr2_rel F Rs (R2Union R S) = (eval_rr2_rel F Rs R) ∪ (eval_rr2_rel F Rs S)
| eval_rr2_rel F Rs (R2Inter R S) = (eval_rr2_rel F Rs R) ∩ (eval_rr2_rel F Rs S)
| eval_rr2_rel F Rs (R2Diff R S) = (eval_rr2_rel F Rs R) − (eval_rr2_rel F Rs S)
| eval_rr2_rel F Rs (R2Comp R S) = (eval_rr2_rel F Rs R) O (eval_rr2_rel F Rs S)
| eval_rr2_rel F Rs (R2Diag R) = Id_on (eval_rr1_rel F Rs R)
| eval_rr2_rel F Rs (R2Prod R S) = (eval_rr1_rel F Rs R) × (eval_rr1_rel F Rs S)

Figure 5. Semantics of GTT, RR1 and RR2 relations.

any functions that can compute eval_gtt_rel, eval_rr1_rel,
and eval_rr2_rel are suitable as a decision procedure for the
first-order theory of rewriting. The equations in Table 1 are
proved correct in lemmata of the following shape (✓):
lemma eval_rr2_rel F Rs (R2Step ts) =

Restr (grstep (is_to_trs Rs ts)) (T𝐺 F )
lemma eval_rr2_rel F Rs (R2StepEq ts) =

Restr ((grstep (is_to_trs Rs ts))=) (T𝐺 F )
lemma eval_rr2_rel F Rs (R2ParStep ts) =
Restr (gpar_rstep (is_to_trs Rs ts)) (T𝐺 F )

The correctness of the tree automata constructions then
follows from the correctness of the primitives→𝜖 (ARoot,
from Figure 5), T (F ) (R1Terms), NF (R1NF ), and INF (R1Inf )
as well as correctness of the closure operations (✓).

Felgenhauer et al. [8, Section 7] pointed out the limitation
of Isabelle’s code generation mechanism to obtain executable
code for inductively defined sets, and introduced a conve-
nient abstract Horn inference system for sets that are finite.
We use this framework to obtain executable code for the
following constructions:
• reachable and productive states of a tree automaton,
✓✓✓✓

• rules and states of tree automata obtained by the subset
construction,✓✓✓
• epsilon transitions for the composition and transitive
closure constructions of (anchored) GTTs,
• an inductive set needed for the tree automaton for the
infinity predicate. ✓✓

We conclude this section by providing some statistics of
our formalization in Table 2. The numbers in parentheses
refer to re-formalizations (partly due to the new fset founda-
tion for tree automata) of existing results reported in [8, 11].
The formalization is divided into the following components:

Utility files This material covers three parts. First, lem-
mata for various kinds of basic operations that were
required in the formalization. For example, the image
of a Cartesian product can be rewritten as an image
over a tuple. Second, it deals with all missing concepts
for finite set type (e.g., transitive closure). A third part
concerns the saturation process described in [11].

Horn inference system This is the basic building
block to obtain executable definitions. Felgenhauer
et al. [8] provide a detailed explanation.

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/FOR_Semantics.html
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/GTT_RRn.html
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Impl.html#lem:reach_list_impl_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Impl.html#lem:reach_list_impl_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Impl.html#lem:productive_list_impl_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Impl.html#lem:productive_list_impl_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Impl.html#lem:ps_construction_list_impl_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Impl.html#lem:ps_construction_list_impl_sound2
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Tree_Automata_Impl.html#lem:ps_construction_list_impl_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Regular_Relation_Impl.html#lem:Q_impl_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2021/FORT/Regular_Relation_Impl.html#lem:Q_impl_sound
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Table 2. Formalization data.

topics lines facts defs

Utility files 616 (+1659) 47 (+183) 2 (+ 22)
Horn inference system (+ 462) (+ 39) (+ 17)
Ground constructions 902 (+1939) 75 (+242) 6 (+ 39)

Regular relations 529 (+3495) 35 (+239) 9 (+ 56)
FORT 2563 (+ 655) 206 (+ 65) 37 (+ 6)

Implementation files 419 (+1237) 26 (+ 75) 12 (+ 32)

total 5029 (+9447) 389 (+843) 66 (+172)

Ground constructions This component is concerned
with ground instances of terms, contexts and multi-
hole contexts. Additionally, we provide higher-order
properties to obtain results for closing relations under
(multi-hole) contexts as described in Section 3.

Regular relations This part of the formalization deals
with all topics concerning regular relations, as de-
scribed in Sections 4, 5 and 6.

FORT Herewe start the foundation of our ongoingwork,
to certify the first-order theory of rewriting for linear
variable-separated TRSs. Currently it contains the an-
chored GTT construction of the root-step relation, the
normal form automaton ported from [11], and vari-
ous kinds of multi-hole closures of regular relations
(cf. Lemma 6.3).

Implementation files This last part contains the re-
quired code equations for Isabelle’s code generation
facility to produce executable Haskell code from our
constructions.

9 Conclusion and Future Work
In this paper we presented an executable formalization in
Isabelle/HOL of a decision procedure for the first-order the-
ory of rewriting of (finite) linear, variable separated TRSs.
The decision procedure uses closure operations on anchored
GTTs and RR𝑛 automata. We are in the process of develop-
ing a certificate language that corresponds one-to-one to
these operations. A reincarnation of FORT will then output
certificates in this language and these certificates are subse-
quently verified by executable code that is generated from
the formalization.

Upgrading FORT to support the full formalized first-order
theory as described in this paper is another obvious task.
In the other direction, [13] describes useful extensions to
the first-order theory for which we would like to provide
executable formalizations and corresponding primitives in
the certificate language. Specifically, support for multiple
TRSs, which is used to express properties like commutation,
and support for many-sorted TRSs will be added.
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