TRS:
 {           terms(N) -> cons(recip(sqr(N))),
             sqr(0()) -> 0(),
             sqr(s()) -> s(),
             dbl(0()) -> 0(),
             dbl(s()) -> s(),
          add(0(), X) -> X,
          add(s(), Y) -> s(),
        first(0(), X) -> nil(),
  first(s(), cons(Y)) -> cons(Y)}
 RPO Product:
  Quasi-Precedence:
  terms > sqr
  empty
  
  Qed


TRS:
 {           terms(N) -> cons(recip(sqr(N))),
             sqr(0()) -> 0(),
             sqr(s()) -> s(),
             dbl(0()) -> 0(),
             dbl(s()) -> s(),
          add(0(), X) -> X,
          add(s(), Y) -> s(),
        first(0(), X) -> nil(),
  first(s(), cons(Y)) -> cons(Y)}
 Cdiprover:
  Interpretation class: quasisimplemixed
  Complexity bound: POLYTIME COMPUTABLE IF RPO-TERMINATING
  first(X8, X7) = + 0*X8^2 + 0*X7^2 + 2*X8 + 1 + 2*X7 + 0*X7*X8
  nil = + 0
  add(X6, X5) = + 0*X6^2 + 2*X5^2 + 1*X6 + 2 + 2*X5 + 0*X5*X6
  dbl(X4) = + 0*X4^2 + 2 + 1*X4
  s = + 0
  0 = + 0
  terms(X3) = + 0*X3^2 + 3 + 3*X3
  sqr(X2) = + 0*X2^2 + 0 + 2*X2
  recip(X1) = + 1*X1 + 1
  cons(X0) = + 1*X0 + 1
  
  Qed