Certification Problem

Input (COPS 62)

We consider the TRS containing the following rules:

if(true,x,y) x (1)
if(false,x,y) y (2)
-(s(x),s(y)) -(x,y) (3)
-(x,0) x (4)
-(0,x) 0 (5)
<(s(x),s(y)) <(x,y) (6)
<(0,s(x)) true (7)
<(x,0) false (8)
mod(0,y) 0 (9)
mod(x,s(y)) if(<(x,s(y)),x,mod(-(x,s(y)),s(y))) (10)
mod(x,0) x (11)
gcd(x,y) gcd(y,mod(x,y)) (12)
gcd(x,0) x (13)
gcd(0,x) x (14)

The underlying signature is as follows:

{if/3, true/0, false/0, -/2, s/1, 0/0, </2, mod/2, gcd/2}

Property / Task

Prove or disprove confluence.

Answer / Result

Yes.

Proof (by csi @ CoCo 2020)

1 Critical Pair Closing System

Confluence is proven using the following terminating critical-pair-closing-system R:

<(0,s(x)) true (7)
if(true,x,y) x (1)
gcd(0,x) x (14)
mod(x,0) x (11)
mod(0,y) 0 (9)
gcd(x,0) x (13)

1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[gcd(x1, x2)] = 1 · x1 + 5 · x2 + 0
[mod(x1, x2)] = 4 · x1 + 2 · x2 + 4
[<(x1, x2)] = 1 · x1 + 4 · x2 + 0
[0] = 1
[s(x1)] = 4 · x1 + 4
[if(x1, x2, x3)] = 1 · x1 + 2 · x2 + 1 · x3 + 2
[true] = 6
all of the following rules can be deleted.
<(0,s(x)) true (7)
if(true,x,y) x (1)
gcd(0,x) x (14)
mod(x,0) x (11)
mod(0,y) 0 (9)
gcd(x,0) x (13)

1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.