Certification Problem

Input (TPDB Runtime_Complexity_Innermost_Rewriting/Transformed_CSR_04/MYNAT_nosorts-noand_FR)

The rewrite relation of the following TRS is considered.

U11(tt,M,N) U12(tt,activate(M),activate(N)) (1)
U12(tt,M,N) s(plus(activate(N),activate(M))) (2)
U21(tt,M,N) U22(tt,activate(M),activate(N)) (3)
U22(tt,M,N) plus(x(activate(N),activate(M)),activate(N)) (4)
plus(N,0) N (5)
plus(N,s(M)) U11(tt,M,N) (6)
x(N,0) 0 (7)
x(N,s(M)) U21(tt,M,N) (8)
activate(X) X (9)
The evaluation strategy is innermost.

Property / Task

Determine bounds on the runtime complexity.

Answer / Result

An upperbound for the complexity is O(n2).

Proof (by AProVE @ termCOMP 2023)

1 Dependency Tuples

We get the following set of dependency tuples:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
originates from
U11(tt,z0,z1) U12(tt,activate(z0),activate(z1)) (10)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
originates from
U12(tt,z0,z1) s(plus(activate(z1),activate(z0))) (12)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
originates from
U21(tt,z0,z1) U22(tt,activate(z0),activate(z1)) (14)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
originates from
U22(tt,z0,z1) plus(x(activate(z1),activate(z0)),activate(z1)) (16)
plus#(z0,0) c4 (19)
originates from
plus(z0,0) z0 (18)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
originates from
plus(z0,s(z1)) U11(tt,z1,z0) (20)
x#(z0,0) c6 (23)
originates from
x(z0,0) 0 (22)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
originates from
x(z0,s(z1)) U21(tt,z1,z0) (24)
activate#(z0) c8 (27)
originates from
activate(z0) z0 (26)
Moreover, we add the following terms to the innermost strategy.
U11#(tt,z0,z1)
U12#(tt,z0,z1)
U21#(tt,z0,z1)
U22#(tt,z0,z1)
plus#(z0,0)
plus#(z0,s(z1))
x#(z0,0)
x#(z0,s(z1))
activate#(z0)

1.1 Rule Shifting

The rules
x#(z0,0) c6 (23)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U12(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U21(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U22(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[plus(x1, x2)] = 1 + 1 · x1 + 1 · x2
[x(x1, x2)] = 1 + 1 · x1
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 0
[U12#(x1, x2, x3)] = 0
[U21#(x1, x2, x3)] = 1 · x2 + 0 + 1 · x3
[U22#(x1, x2, x3)] = 1 · x2 + 0 + 1 · x3
[plus#(x1, x2)] = 0
[x#(x1, x2)] = 1 · x1 + 0 + 1 · x2
[activate#(x1)] = 0
[0] = 1
[s(x1)] = 1 · x1 + 0
[tt] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1 Rule Shifting

The rules
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U12(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U21(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U22(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[plus(x1, x2)] = 1 + 1 · x1 + 1 · x2
[x(x1, x2)] = 1
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 0
[U12#(x1, x2, x3)] = 0
[U21#(x1, x2, x3)] = 1 · x2 + 0
[U22#(x1, x2, x3)] = 1 · x2 + 0
[plus#(x1, x2)] = 0
[x#(x1, x2)] = 1 · x2 + 0
[activate#(x1)] = 0
[0] = 1
[s(x1)] = 1 + 1 · x1
[tt] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1.1 Rule Shifting

The rules
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U12(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U21(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U22(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[plus(x1, x2)] = 1 + 1 · x1 + 1 · x2
[x(x1, x2)] = 1
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 0
[U12#(x1, x2, x3)] = 0
[U21#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[U22#(x1, x2, x3)] = 1 · x2 + 0 + 1 · x3
[plus#(x1, x2)] = 0
[x#(x1, x2)] = 1 · x1 + 0 + 1 · x2
[activate#(x1)] = 0
[0] = 1
[s(x1)] = 1 + 1 · x1
[tt] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1.1.1 Rule Shifting

The rules
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U12(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U21(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U22(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[plus(x1, x2)] = 1 + 1 · x1 + 1 · x2
[x(x1, x2)] = 1 + 1 · x1
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 0
[U12#(x1, x2, x3)] = 0
[U21#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[U22#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[plus#(x1, x2)] = 0
[x#(x1, x2)] = 1 · x1 + 0 + 1 · x2
[activate#(x1)] = 0
[0] = 1
[s(x1)] = 1 + 1 · x1
[tt] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1.1.1.1 Rule Shifting

The rules
plus#(z0,0) c4 (19)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U12(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U21(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[U22(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[plus(x1, x2)] = 1 + 1 · x1 + 1 · x2
[x(x1, x2)] = 1
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 1 · x1 + 0
[U12#(x1, x2, x3)] = 1 · x1 + 0
[U21#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2
[U22#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2
[plus#(x1, x2)] = 1
[x#(x1, x2)] = 1 · x2 + 0
[activate#(x1)] = 0
[0] = 1
[s(x1)] = 1 + 1 · x1
[tt] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1.1.1.1.1 Rule Shifting

The rules
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 2 · x1 + 1 · x2 + 1 · x3 + 1 · x3 · x3 + 1 · x2 · x3 + 1 · x1 · x3 + 1 · x1 · x1 + 2 · x2 · x1 + 1 · x2 · x2
[U12(x1, x2, x3)] = 1 + 2 · x1 + 2 · x1 · x1
[U21(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x3 · x3 + 1 · x2 · x3 + 1 · x1 · x3 + 2 · x1 · x1 + 2 · x2 · x1 + 1 · x2 · x2
[U22(x1, x2, x3)] = 1 + 2 · x1 + 1 · x1 · x1
[plus(x1, x2)] = 1
[x(x1, x2)] = 0
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 2 + 1 · x1 + 1 · x2 + 2 · x1 · x3 + 2 · x1 · x1 + 1 · x2 · x1
[U12#(x1, x2, x3)] = 1 + 2 · x1 + 1 · x2 + 2 · x1 · x1
[U21#(x1, x2, x3)] = 2 · x1 + 0 + 1 · x3 + 1 · x2 · x3 + 2 · x1 · x3 + 2 · x1 · x1 + 1 · x2 · x1
[U22#(x1, x2, x3)] = 2 · x1 + 0 + 1 · x3 + 1 · x2 · x3 + 1 · x1 · x1
[plus#(x1, x2)] = 1 · x2 + 0
[x#(x1, x2)] = 1 · x1 · x2 + 0
[activate#(x1)] = 0
[0] = 2
[s(x1)] = 2 + 1 · x1
[tt] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1.1.1.1.1.1 Rule Shifting

The rules
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x3 · x3 + 1 · x2 · x3 + 2 · x1 · x3 + 1 · x1 · x1 + 2 · x2 · x1 + 1 · x2 · x2
[U12(x1, x2, x3)] = 1 + 2 · x1 + 1 · x1 · x1
[U21(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x3 · x3 + 1 · x2 · x3 + 2 · x1 · x3 + 1 · x1 · x1 + 1 · x2 · x1 + 1 · x2 · x2
[U22(x1, x2, x3)] = 1 + 1 · x1 + 2 · x1 · x1
[plus(x1, x2)] = 1
[x(x1, x2)] = 0
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 2 · x1 + 0 + 1 · x2 + 2 · x1 · x3 + 2 · x1 · x1 + 1 · x2 · x1
[U12#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x1 · x1
[U21#(x1, x2, x3)] = 2 · x1 + 0 + 1 · x3 + 1 · x2 · x3 + 2 · x1 · x3 + 2 · x1 · x1 + 1 · x2 · x1
[U22#(x1, x2, x3)] = 2 · x1 + 0 + 1 · x3 + 1 · x2 · x3 + 2 · x1 · x1
[plus#(x1, x2)] = 1 · x2 + 0
[x#(x1, x2)] = 1 · x1 · x2 + 0
[activate#(x1)] = 0
[0] = 2
[s(x1)] = 2 + 1 · x1
[tt] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
activate#(z0) c8 (27)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c1(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c2(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[c3(x1,...,x5)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6] = 0
[c7(x1)] = 1 · x1 + 0
[c8] = 0
[U11(x1, x2, x3)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x3 · x3 + 1 · x2 · x3 + 1 · x1 · x3 + 1 · x1 · x1 + 1 · x2 · x1 + 1 · x2 · x2
[U12(x1, x2, x3)] = 1 + 1 · x1 + 2 · x1 · x1
[U21(x1, x2, x3)] = 1 + 2 · x1 + 1 · x2 + 1 · x3 + 1 · x3 · x3 + 1 · x2 · x3 + 1 · x1 · x3 + 1 · x1 · x1 + 2 · x2 · x1 + 1 · x2 · x2
[U22(x1, x2, x3)] = 1 + 2 · x1 + 2 · x1 · x1
[plus(x1, x2)] = 2
[x(x1, x2)] = 0
[activate(x1)] = 1 · x1 + 0
[U11#(x1, x2, x3)] = 2 + 2 · x1 + 2 · x2
[U12#(x1, x2, x3)] = 1 + 1 · x1 · x1 + 2 · x2 · x1
[U21#(x1, x2, x3)] = 2 + 2 · x1 + 1 · x2 + 2 · x3 + 2 · x2 · x3 + 2 · x1 · x1 + 1 · x2 · x1 + 1 · x2 · x2
[U22#(x1, x2, x3)] = 2 + 2 · x1 + 1 · x2 + 2 · x2 · x3 + 2 · x1 · x3 + 1 · x2 · x2
[plus#(x1, x2)] = 2 · x2 + 0
[x#(x1, x2)] = 1 + 1 · x2 + 1 · x2 · x2 + 2 · x1 · x2
[activate#(x1)] = 1
[0] = 2
[s(x1)] = 2 + 1 · x1
[tt] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
U11#(tt,z0,z1) c(U12#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (11)
U12#(tt,z0,z1) c1(plus#(activate(z1),activate(z0)),activate#(z1),activate#(z0)) (13)
U21#(tt,z0,z1) c2(U22#(tt,activate(z0),activate(z1)),activate#(z0),activate#(z1)) (15)
U22#(tt,z0,z1) c3(plus#(x(activate(z1),activate(z0)),activate(z1)),x#(activate(z1),activate(z0)),activate#(z1),activate#(z0),activate#(z1)) (17)
plus#(z0,0) c4 (19)
plus#(z0,s(z1)) c5(U11#(tt,z1,z0)) (21)
x#(z0,0) c6 (23)
x#(z0,s(z1)) c7(U21#(tt,z1,z0)) (25)
activate#(z0) c8 (27)
activate(z0) z0 (26)

1.1.1.1.1.1.1.1.1.1 R is empty

There are no rules in the TRS R. Hence, R/S has complexity O(1).