Certification Problem

Input (TPDB TRS_Equational/Mixed_AC/boolean_rings)

The rewrite relation of the following equational TRS is considered.

xor(F,x) x (1)
xor(neg(x),x) F (2)
and(T,x) x (3)
and(F,x) F (4)
and(x,x) x (5)
and(xor(x,y),z) xor(and(x,z),and(y,z)) (6)
xor(x,x) F (7)
impl(x,y) xor(and(x,y),xor(T,x)) (8)
or(x,y) xor(and(x,y),xor(x,y)) (9)
equiv(x,y) xor(xor(T,y),x) (10)
neg(x) xor(T,x) (11)

Associative symbols: and, or, xor

Commutative symbols: and, or, xor

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[and(x1, x2)] = 1 · x2 + 1 · x1 + 2 · x1 · x2
[or(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[xor(x1, x2)] = 1 + 1 · x2 + 1 · x1
[F] = 1
[neg(x1)] = 3 + 3 · x1 + 3 · x1 · x1
[T] = 0
[impl(x1, x2)] = 3 + 1 · x2 + 3 · x1 + 2 · x1 · x2
[equiv(x1, x2)] = 3 + 1 · x2 + 1 · x1
the rules
xor(F,x) x (1)
xor(neg(x),x) F (2)
impl(x,y) xor(and(x,y),xor(T,x)) (8)
or(x,y) xor(and(x,y),xor(x,y)) (9)
equiv(x,y) xor(xor(T,y),x) (10)
neg(x) xor(T,x) (11)
can be deleted.

1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[and(x1, x2)] = 1 · x2 + 1 · x1 + 1 · x1 · x2
[or(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[xor(x1, x2)] = 1 + 1 · x2 + 1 · x1
[T] = 2
[F] = 0
the rules
and(T,x) x (3)
xor(x,x) F (7)
can be deleted.

1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[and(x1, x2)] = 2 + 2 · x2 + 2 · x1 + 1 · x1 · x2
[or(x1, x2)] = 1 + 2 · x2 + 2 · x1 + 2 · x1 · x2
[xor(x1, x2)] = 2 + 1 · x2 + 1 · x1
[F] = 3
the rules
and(F,x) F (4)
and(x,x) x (5)
can be deleted.

1.1.1.1 AC Rule Removal

Using the non-linear polynomial interpretation over the naturals
[and(x1, x2)] = 2 + 3 · x2 + 3 · x1 + 3 · x1 · x2
[or(x1, x2)] = 3 + 3 · x2 + 3 · x1 + 2 · x1 · x2
[xor(x1, x2)] = 2 + 1 · x2 + 1 · x1
the rule
and(xor(x,y),z) xor(and(x,z),and(y,z)) (6)
can be deleted.

1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is AC-terminating.