Problem: g(x) -> h(k(x),x) g(x) -> x h(k(x),x) -> x k(c()) -> c() h(k(c()),c()) -> g(c()) h(c(),c()) -> c() Proof: Church Rosser Transformation Processor: strict: weak: critical peaks: 6 h(k(x),x) <-0|[]- g(x) -1|[]-> x x <-1|[]- g(x) -0|[]-> h(k(x),x) c() <-2|[]- h(k(c()),c()) -4|[]-> g(c()) h(c(),c()) <-3|0[]- h(k(c()),c()) -2|[]-> c() h(c(),c()) <-3|0[]- h(k(c()),c()) -4|[]-> g(c()) g(c()) <-4|[]- h(k(c()),c()) -2|[]-> c() Redundant Rules Transformation: g(x) -> x h(k(x),x) -> x k(c()) -> c() h(c(),c()) -> c() Church Rosser Transformation Processor (kb): g(x) -> x h(k(x),x) -> x k(c()) -> c() h(c(),c()) -> c() critical peaks: joinable Matrix Interpretation Processor: dim=1 interpretation: [k](x0) = 2x0 + 1, [c] = 0, [g](x0) = 2x0 + 1, [h](x0, x1) = 6x0 + 3x1 + 6 orientation: g(x) = 2x + 1 >= x = x h(k(x),x) = 15x + 12 >= x = x k(c()) = 1 >= 0 = c() h(c(),c()) = 6 >= 0 = c() problem: Qed