
Layer Systems for Confluence — Formalized?

Bertram Felgenhauer1 and Franziska Rapp2

1 Department of Computer Science, University of Innsbruck, Austria
bertram.felgenhauer@uibk.ac.at

2 Allgemeines Rechenzentrum Innsbruck, Austria

Abstract. Toyama’s theorem states that the union of two confluent
term rewrite systems with disjoint signatures is again confluent. This is
a fundamental result in term rewriting, and several proofs appear in the
literature. The underlying proof technique has been adapted to prove fur-
ther results like persistence of confluence (if a many-sorted term rewrite
system is confluent, then the underlying unsorted system is confluent)
or the preservation of confluence by currying.
In this paper we present a formalization of modularity and related results
in Isabelle/HOL. The formalization is based on layer systems, which
cover modularity, persistence, currying (and more) in a single framework.
The persistence result has been integrated into the certifier CeTA and the
confluence tool CSI, allowing us to check confluence proofs based on
persistent decomposition, of which modularity is a special case.

1 Introduction

Toyama’s theorem [13,17,19] states that confluence is modular, i.e., that the
union of two confluent term rewrite systems (TRSs) over disjoint signatures is
confluent if and only if the two TRSs themselves are confluent. For example,
Combinatory Logic extended with an equality test

@(@(K, x), y)→ x @(@(@(S, x), y), z)→ @(@(x, z),@(y, z)) e(x, x)→ >

is confluent because the first two rules are orthogonal, the last rule is terminating
and has no critical pairs, and the signatures of these two sets of rules are disjoint.
As the example shows, modularity opens up a decomposition approach to proving
confluence, which is attractive, because different confluence criteria may apply
to the constituent TRSs that do not apply to their union. By adapting the
modularity proof, several other results have been proved in the literature.

– Confluence is persistent [1], i.e., a TRS is confluent if and only if it is con-
fluent as a many-sorted TRS. This gives rise to a decomposition technique,
and fully subsumes modularity.

– Confluence is preserved by currying [11]. Currying is useful, for example, as
a preprocessing step for deciding ground confluence.

? This work is supported by FWF (Austrian Science Fund) project P27528.

– The notion of modularity has been generalized as well, by weakening the
assumption that the signatures of the two TRSs are disjoint; for example,
confluence is modular for layer-preserving composable TRSs [16], and for
quasi-ground systems [12].

The list goes on. All of these proofs are based on decomposing terms into a
maximal top and remaining aliens, but with different sets of admissible tops. In
each case, confluence is established by induction on the number of nested tops in
that decomposition (the rank of a term). Layer systems [7] were introduced as an
abstraction from these proofs. A layer system L is simply the set of admissible
tops; for modularity, those are homogeneous multi-hole contexts, i.e., multi-
hole contexts whose function symbols all belong to the signature of only one
of the two given TRSs. At the heart of layer systems lies an adaptation of
the modularity proof in [17]. When establishing confluence by layer systems,
as remaining proof obligations, one has to check that a layer system satisfies
so called layer conditions, which is easier than doing a full adaptation of the
modularity proof.

Isabelle/HOL [15] is an interactive proof assistant based on higher-order logic
with a Hindley-Milner type system, extended with type classes. It follows the
LCF tradition [9] in having a trusted kernel, which ensures that theorems fol-
low from the axioms by construction. Isabelle features a structured proof lan-
guage [20]. Another useful feature are locales, which allow bundling of functions
and assumptions that are shared by several definitions and theorems. (For exam-
ple, locales are used to model groups in Isabelle/HOL). The locale mechanism
in Isabelle is quite powerful; in particular, locales can be instantiated (so Z with
addition, 0 as unit, and negation is a group) and extended (for example, the
group locale is an extension of a semigroup locale, with additional operations
(unit and inverse) and assumptions). Our main reason for using Isabelle/HOL
is the existing Isabelle Formalization of Rewriting, IsaFoR [18]. In addition to
fundamental notions of term rewriting like terms, substitutions, contexts, multi-
hole contexts, and so on, IsaFoR is also the foundation of CeTA (Certified Tool
Assertions), which can certify termination and confluence proofs, among other
things.

In this paper we describe a formalization of layer systems in Isabelle/HOL
as part of IsaFoR. In fact, the prospect of formalization was one of the selling
points of layer systems, with the idea of making large parts of the proof reusable.
Note that whereas adapting existing proofs is convenient on paper, it becomes a
burden when done in a formalization. The resulting duplication of code (that is,
theorem statements and proofs) would decrease maintainability and is therefore
best avoided. Our effort covers modularity of confluence, persistence of conflu-
ence, and preservation of confluence by currying for first order term rewrite
systems. To the best of our knowledge, this is the first time that any of these
results has been fully formalized in a proof assistant.

From a practical perspective, our interest in formalization is motivated by
our work on an automated confluence prover, CSI [14]. As with all software, CSI
potentially contains bugs. In order to increase the trust in CSI, proof output in

a machine readable format is supported, which can be checked using CeTA [18].
As part of our formalization effort, we have extended CeTA with support for a
decomposition technique based on persistence of confluence, allowing CSI and
potentially other confluence tools to produce certifiable proofs using this tech-
nique. We have prepared a website with examples and information about the
used software at

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/

For most theorems and many definitions, we provide the corresponding identifiers
in the formalization; in the PDF version of this paper, they link to the HTML
version of the formalization itself.

The remainder of this paper is structured as follows. We recall notations
and basic definitions in Section 2. Then we present the layer conditions, which
are central to our formalization, in Section 3. The next two sections are about
persistence. Section 4 uses persistence as an example to illustrate how layer
systems can be applied to obtain a confluence result, while Section 5 focuses on
the persistent decomposition. In Section 6, we present details of the currying
application. Finally, we conclude in Section 7.

2 Preliminaries

We use standard notation from term rewriting [3]. Let F be a signature and V
be a set of variables. Then T (F ,V) is the set of terms over that signature. We
denote by Pos(t) the set of positions of t. The subterm of t at position p is t|p,
and t[s]p is the result of replacing the subterm at position p in t by s. We also
write PosX(r) for the set of positions p of t such that the root symbol of t|p is
in X. If X = {x} is a singleton set, we may omit the outer curly braces and
write Posx(t). The set of variables of t is Var(t). The set of multi-hole contexts
over F and V is denoted by C(F ,V). (Multi-hole contexts are terms that may
contain occurrences of an extra constant �, representing their holes.) If C is a
multi-hole context with n holes, then C[t1, . . . , tn] denotes the term obtained by
replacing the i-th hole in C by ti for 1 6 i 6 n. On multi-hole contexts, we
have a partial order v which is generated by � v C and closure under contexts
(D v D′ implies C[D] v C[D′]). The corresponding partial supremum operation
is denoted by t; intuitively it merges two multi-hole contexts.

A substitution σ, τ, . . . is a map from variables to terms. The result of ap-
plying the substitution σ to the term t is denoted by tσ. A term rewrite system
(TRS) R is a set of rules `→ r, where ` and r are terms, ` is not a variable, and
Var(r) ⊆ Var(`). There is a rewrite step from s to t (s→R t) if s = s[`σ]p and
t = s[rσ]p for a position p ∈ Pos(s) and substitution σ.

Given a relation →, we write ← and →∗ for its inverse and its reflexive
transitive closure, respectively. A relation → is confluent if t ∗← s→∗ u implies

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/

t →∗ · ∗← u. It is confluent on X if for all s ∈ X, t ∗← s →∗ u implies
t→∗ · ∗← u.3

3 Layer Conditions

In the layer system approach to confluence, one sets up a layer system for a TRS
R that satisfies the so-called layer conditions. These layer conditions constitute
the interface between the reusable part of the formalization and the parts that
are specific to a particular application of layer systems (e.g., modularity). Since
they are central to the formalization, we recall the basic constructions and the
layer conditions here. For full details please refer to [7].

Recall that modularity of confluence states that the union of two TRSs over
disjoint signatures is confluent if each of the two TRSs is confluent (the converse
is also true and fairly easy to prove). Modularity is proved by induction on the
rank of a term; to obtain the rank, one decomposes the term into alternating
layers of multi-hole contexts over the two signatures; the rank is the maximum
nesting depth of the resulting layers.

Example 1. Let F1 = {A,F} and F2 = {b, g}. Then rank(F(F(A))) = 1, while
rank(g(b,F(b))) = 3; the latter term is decomposed into g(b,�), F(�) and b.

Layer systems abstract from this situation by considering all possible multi-hole
contexts at the top of such a decomposition. So a layer system is a set of multi-
hole contexts, and gives rise to tops and maximal tops as follows.

Definition 2 ([7, Definition 3.1]). Let F be a signature and V be an infinite
set of variables. Let L ⊆ C(F ,V) be a set of multi-hole contexts over F . Then
L ∈ L is called a top of a context C ∈ C(F ,V) (according to L) if L v C. A top
is a max-top of C if it is maximal with respect to v among the tops of C.

We want to prove that all terms are confluent, provided that terms of rank
1 are confluent. To this end we have to impose certain restrictions on the layer
system.

– the rank must be well-defined, which is ensured if any term has a unique
max-top that is not empty (i.e., not equal to �);

– rewrite steps must not span several layers (so it can be mimicked by a suitable
rank 1 term); and

– the rank must not increase by rewriting.

Example 3. We illustrate a few obstructions to proving confluence in Figure 1.
(This example is an abridged version of [7, Example 3.4].)

3 Another reasonable definition for “→ is confluent on X” would be that→∩ (X×X)
is confluent; this is equivalent to the given definition whenever X is closed under
rewriting by →.

f

c c

→
c→g(c) f

c g

c

(a) Breaking layers.

f

c c

→
c→g(c) f

c g

c

(b) Partial fusion.

h

c c

→
h(c,x)→g(h(x,x))

g

h

c c

(c) Fusion from above.

f

g

c

c

→
c→g(c) f

g

c

g

c

(d) Conspiring aliens.

Fig. 1: Undesired behavior on layers.

(a) Here, we have the rewrite step f(c, c) → f(c, g(c)), decomposed by some set
of layers L. However, the c subterm becomes two layers after the rewrite
step, increasing the rank. So rewriting a layer must again result in a layer.

(b) This is the same rewrite step as in (a). In this example, g(c) may be a layer.
However, the resulting term merges with the layer above (a phenomenon
we call fusion). In the example, the fusion is partial ; the fused context is
broken apart. This is caused by there being a layer f(�, g(�)) but no layer
f(�, g(c)).

(c) In this example, there is a root step h(c, c) → g(h(c, c)). Note that both c
constants in the result originate in the isolated c, but nevertheless, one of
them has fused with the top in the result (so the rewrite step takes place
above the point where fusion happens, hence fusion from above). In [7, Ex-
ample 3.4] we show that the TRS

f(x, x)→ a f(x, g(x))→ b h(c, x)→ g(h(x, x))

has a set of layers such that fusion from above is the sole reason for the
system being non-confluent despite being confluent on terms of rank 1.

(d) Finally, it may happen that a rewrite step triggers fusion in a position that
is parallel to the rewrite step. (aliens are what remains of a term after taking
away its max-top; here a rewrite step in one alien causes another alien to
fuse, hence conspiring aliens). As far as we know, this is not actually an
obstruction to confluence, but nevertheless absence of conspiring aliens is
required for our proof.

Definition 4 ([7, Definition 3.3]). Let F be a signature. A set L ⊆ C(F ,V)
of contexts is called a layer system4 if it satisfies properties (L1), (L2), and
(L3). The elements of L are called layers. A TRS R over F is weakly layered

4 In [7] we use L for layer systems. We use L here to be consistent with snippets like
Figure 2 that are generated from our Isabelle formalization, where L is not available.

(according to a layer system L) if condition (W) is satisfied for each `→ r ∈ R.
It is layered (according to a layer system L) if conditions (W), (C1), and (C2)
are satisfied. The conditions are as follows.

(L1) Each term in T (F ,V) has a non-empty top.
(L2) If x ∈ V and C ∈ C(F ,V) then C[x]p ∈ L if and only if C[�]p ∈ L.
(L3) If L,N ∈ L, p ∈ PosF (L), and L|p tN is defined then L[L|p tN]p ∈ L.
(W) If M is a max-top of s, p ∈ PosF (M), and s→p,`→r t then M →p,`→r L

for some L ∈ L.
(C1) In (W) either L is a max-top of t or L = �.
(C2) If L,N ∈ L and L v N then L[N |p]p ∈ L for any p ∈ Pos�(L).

In a nutshell, (L1) and (L3) ensure that the rank is well-defined. Property
(L2) is a technical property that ensures that aliens can always be represented
by suitable variables in the confluence proof. Condition (W) prevents breaking
layers, and together with (L3), fusion from above. The final two conditions, (C1)
and (C2), prevent fusion from above and conspiring aliens, respectively. Now, let
us formally define the rank and aliens of a term.

Definition 5 ([7, Definition 3.6]). Let t = M [t1, . . . , tn] with M the max-top
of t. We define rank(t) = 1 + max{rank(ti) | 1 6 i 6 n}, where max(∅) = 0
(t1, . . . , tn are the aliens of t).

The main theorems of [7] are as follows (we omit [7, Theorem 4.3] because it
has yet to be formalized).

Theorem 6 ([7, Theorem 4.1]). Let R be a weakly layered TRS that is con-
fluent on terms of rank one. If R is left-linear then R is confluent.

Theorem 7 ([7, Theorem 4.6]). Let R be a layered TRS that is confluent on
terms of rank one. Then R is confluent.

locale layer system sig = fixes F :: ′f sig and L :: (′f , ′v) mctxt set

locale layer system = layer system sig F L for F :: ′f sig and
L :: (′f , ′v :: infinite) mctxt set +
assumes L sig : L ⊆ C
and L1: t ∈ T =⇒ ∃L ∈ L. L 6= MHole ∧ L ≤ mctxt of term t
and L2: p ∈ poss mctxt C =⇒

mreplace at C p (MVar x) ∈ L ←→ mreplace at C p MHole ∈ L
and L3: L ∈ L =⇒ N ∈ L =⇒ p ∈ funposs mctxt L =⇒

(subm at L p, N) ∈ comp mctxt =⇒
mreplace at L p (subm at L p t N) ∈ L

Fig. 2: Definitions of the layer system sig and layer system locales in IsaFoR.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system

layer system sig

layer system (L1),(L2),(L3)

weakly layered (W) layered (C1),(C2)

Fig. 3: Hierarchy of locales.

In Isabelle, we bundle these assumptions in locales [4]. Figure 2 shows how
the first three layer conditions have been formalized in Isabelle. (A locale is
declared using the locale keyword, followed by the locale name. It may declare
constants using fixes, and make assumptions (often about those constants) using
assumes. Furthermore, a locale may extend other locales; this is the case for
layer system, which extends layer system sig. In order to use a result from a
locale, it has to be interpreted, meaning that one provides definitions for the
types and constants that the locale depends on and prove that they satisfy the
locale assumptions.) Inside the layer system sig locale, we define T and C, the set
of terms and multi-hole contexts over F , and the concept of max-tops. In fact,
max-tops are defined separately for terms and for multi-hole contexts, because
while on paper, multi-hole contexts are just terms which may contain an extra
constant �, in IsaFoR they have their own type. In total, four locales are defined,
capturing the layer conditions, cf. Figure 3. Note that condition (W) is not part
of the layered locale; it would be redundant because (C1) implies (W). In Isabelle
we have encoded this fact by proving that layered is a sublocale of weakly layered,
as indicated by the dashed arrow. (Basically, a locale A is a sublocale of another
locale B if the assumptions of B imply those of A.)

Within the formalization, Theorem 6 is established inside the weakly layered
locale as theorem weakly layered .CR ll, whereas Theorem 7 is holds in the layered
locale as theorem layered .CR. (In fact these statements are declared as locale
assumptions; they become theorems by proving suitable sublocale relationships.
This is done in LS Left Linear.thy and LS General.thy). The proofs of these
main results correspond to Section 4 of [7]. The (lengthy) proof works by induc-
tion on the rank: assuming that terms of rank r are confluent, several auxiliary
results are derived, and finally, confluence of terms of rank r+ 1 follows. To this
end, we use two more locales weakly layered induct and weakly layered induct dd
that capture the induction hypothesis, and an auxiliary assumption (namely
that local peaks of so called short steps are joinable in a suitable way), respec-
tively. For this use of locales it is crucial that they can be interpreted inside
of a proof, since the induction hypothesis cannot be established for arbitrary r
outside of an induction proof. This happens in the proof of the main lemma [7,
Lemma 4.27] which we give in Figure 4. Note that it does induction on the rank
(called rk in the proof), and that it uses an interpret command to instantiate

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#def:%F0%9D%92%9E
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#def:%F0%9D%92%AF
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered_cr_ll
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered_cr_ll
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Left_Linear.html
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_General.html
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common.html#loc:weakly_layered_induct
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common.html#loc:weakly_layered_induct_dd

lemma (in weakly layered) CR main lemma:
assumes base: CR on (rstep ′ R) {t . mctxt of term t ∈ L}
and step:

∧
rk . CR on (rstep ′ R) {t ∈ T . rank t ≤ Suc rk} =⇒

weakly layered induct dd F L R rk (R rk)
shows CR on (rstep ′ R) T

proof −
have CR on (rstep ′ R) {t ∈ T . rank t ≤ Suc rk} for rk
proof (induct rk)

case 0
have t ∈ T ∧ rank t ≤ Suc 0 ←→ mctxt of term t ∈ L for t
using rank 1 [of t] rank gt 0 [of t] L sig by (fastforce simp: C def T def)

then show ?case using base by simp
next

case (Suc rk)
then interpret weakly layered induct dd F L R rk R rk by (rule step)
show ?case using CR Suc rk by (simp only : native terms def)

qed
then show ?thesis by (auto simp: CR on def)

(metis less Suc eq less Suc eq le less Suc eq le)
qed

Fig. 4: Proof of the “Main Lemma” for layer systems [7, Lemma 4.27]

the weakly layered induct dd locale based on the induction hypothesis inside the
proof.

One major benefit of using locales is separation of concerns; thanks to the
abstraction of the layer conditions as locales, we could already work on the appli-
cations like modularity and currying before the proofs of the main results were
complete, without having to worry about working with different assumptions.
Basically, each application is an instantiation of these locales, which we could
establish independently of the main results.

4 Persistence

To give an impression of what an application of layer systems entails, let us con-
sider the case of persistence. This section overlaps with [7, Section 5.5], but here
we focus on interesting aspects in the context of our formalization. In fact, given
that the results presented here are both formalized and previously published, we
focus on ideas rather than giving full proofs.

Definition 8 (many sorted terms, persistent cr infinite vars). Let S be a set of
sorts. A many-sorted signature F associates with each function symbol f of arity
n a signature f : β1 × · · · × βn → α, where β1, . . . , βn, α ∈ S. Furthermore we
assume that there are pairwise disjoint, infinite sets of variables Vα for α ∈ S.
The sets of of terms of sort α for α ∈ S are defined inductively by

Tα ::= Vα ∪ {f(t1, . . . , tn) | f : β1 × · · · × βn → α, t1 ∈ Tβ1
, . . . , tn ∈ Tβn}

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common.html#lem:CR_main_lemma
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common.html#loc:weakly_layered_induct_dd
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#loc:many_sorted_terms
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#loc:persistent_cr_infinite_vars

A many-sorted TRS R is a TRS such that for every ` → r ∈ R, `, r ∈ Tα for
some α ∈ S.

We wish to establish the following theorem using layer systems.

Theorem 9 (many-sorted persistence, CR persist). Let R be a many-sorted
TRS. We let V =

⋃
α∈S Vα. Then R is confluent on Tα for all α ∈ S if and only

if R is confluent on T (F ,V).

To this end we define a layer system L as follows.

Lα ::= V ∪ {�} ∪
{f(C1, . . . , Cn) | f : β1 × · · · × βn → α,C1 ∈ Lβ1 , . . . , Cn ∈ Lβn}

L =
⋃
α∈S

Lα

Showing that L layers R is mostly straightforward. However, in order to show
(W) (which is a prerequisite for showing (C1)), one has to establish that if a
rewrite step is applicable to a term at a position that is part of its max-top, then
it is also applicable to the max-top itself. In order to obtain the substitution for
the second rewrite step, it is helpful to define functions that compute the max-
top:

mtα(x) = x for x ∈ V

mtα(f(t1, . . . , tn)) =

f(mtβ1(t1), . . . ,mtβn(tn)) if f : β1 × · · · × βn → α

� if f : β1 × · · · × βn → α′

and α 6= α′

The max-top of a term t equals mtα(t) for some α ∈ S that can be obtained by
looking at the root symbol of t.

Lemma 10 (push mt subst, push mt ctxt). The following properties hold for
mtα.

– if s ∈ Tα then mtα(sσ) = sσ′ where σ′(x) = mtα(σ(x)) for x ∈ Vα; and
– if p ∈ Pos(mtα(t)), then for some β ∈ S, all terms s satisfy mtα(t[s]p) =

mtα(t)[mtβ(s)].

Now, given a rewrite step s[`σ]p → s[rσ]p, with p ∈ PosF (mtα(s)) (as in (W)),
the lemma entails

mtα(s[`σ]p) = mtα(s)[mtβ(`σ)]p = mtα(s)[`σ′]p

→ mtα(s)[rσ′]p = mtα(s)[mtβ(rσ)]p = mtα(s[rσ]p)

where `, r ∈ Tβ ; this gives the desired rewrite step for (W). For (C1) note that
s[r]p can be a variable, in which case it is possible that mtα(s[rσ]p) = �, whereas
the max-top is larger.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:CR_persist
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#ind:%F0%9D%94%8F_%CE%B1
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#def:%F0%9D%94%8F
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#def:max_top_persistent
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#def:max_top_persistent
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:push_mt_subst
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:push_mt_ctxt

Remark 11. This idea of defining the max-top as a function is a recurring theme;
it features in the formalizations of modularity and currying as well. The main
benefit of (recursive) functions is that they come with an induction principle
that is not available for the implicit notion of a “maximal top”.

After showing that L layers R, Theorem 7 yields the following corollary.

Corollary 12 (CR on union). If R is confluent on L ∩ T (F ,V),5 then R is
confluent on T (F ,V).

Let us now sketch a proof of Theorem 9. First note that if R is a many-sorted
TRS, then the sets Tα are closed under rewriting by R; hence confluence of R
on T (F ,V) implies confluence of R on Tα for any α ∈ S. For the converse, we
want to use Corollary 12. We need to show that R is confluent on L ∩ T (F ,V).
To this end, assume that s ∈ L ∩ T (F ,V), and we have a peak t ∗← s →∗ t.
If s is a variable then s = t = u and we’re done. Otherwise, we can read off
the sort α of s from its root symbol. Note that s is not necessarily an element
of Tα, because L disregards the sorts of variables. We modify s in two steps;
first we annotate each variable with the type that is induced by its context
(i.e., if x is the i-th argument of f : β1 × · · · × βn → γ, then we replace it by
(x, βi));

6 and secondly we rename the annotated variables in such a way that
each (v, β) is replaced by an element of Vβ . In this fashion, we obtain a peak
t′ ∗← s′ →∗ u′, where s′, t′, u′ ∈ Tα, and a substitution σ with s = s′σ, t = t′σ
and u = u′σ. By confluence of R on Tα, there is a valley t′ →∗ v′ ∗← u′, and
hence a corresponding valley t = t′σ →∗ v′σ ∗← u′σ = u in L ∩ T (F ,V).

5 Persistent Decomposition

Aoto and Toyama [1] pointed out that persistence gives rise to a decomposition
technique for proving confluence. The basic idea is to attach sorts to a TRS. To
obtain a decomposition, for each sort of the many-sorted TRS obtained in that
way, the set of rules that are applicable to terms of that sort is computed. By
persistence, if all of the resulting systems are confluent, the original TRS is con-
fluent as well. In [2] a refined version of the persistent decomposition is presented,
wherein only the maximal systems w.r.t. the subset relation are considered.

Example 13 ([1, Example 1]). Consider the TRS R consisting of the rules

f(x, y)→ f(g(x), g(y)) F(g(x), x)→ F(x, g(x))

g(x)→ h(x) F(h(x), x)→ F(x, h(x))

The following sort attachment makes the TRS R many-sorted:

f : 2× 2→ 0 g : 2→ 2 h : 2→ 2 F : 2× 2→ 1

5 Because multi-hole contexts are not terms, this is {t . mctxt of term t ∈ L} in the
formalization.

6 This annotation procedure formalizes the following sentence in the proof of [7, The-
orem 5.13]: “Note that for each p the sort of s′|p is uniquely determined by s.”

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:CR_on_union

Looking at the sorts of possible subterms of terms of sort 0 (namely 0 and 2), 1
(1 and 2) and 2 (only 2), we obtain three induced TRSs, consisting of the first
two rules, the last three rules, and only the second rule of R, respectively. The
last TRS is contained in the other two, and hence does not have to be considered.
Confluence of R follows from confluence of the two systems

g(x)→ h(x) f(x, y)→ f(g(x), g(y))

(which is orthogonal) and

g(x)→ h(x) F(g(x), x)→ F(x, g(x)) F(h(x), x)→ F(x, h(x))

(which is terminating and has joinable critical pairs). Non-confluence of R would
follow if any of the three TRSs induced by the sorts 0, 1, or 2 was non-confluent.

α D α refl
α D β β D γ

α D γ
trans

f : β1 × · · · × βn → α 1 6 i 6 n

α D βi
arg

Fig. 5: Syntactic order on sorts.

Definition 14. Let R be a many-sorted TRS. Based on the signature, we define
an order D on sorts by the rules in Figure 5. The TRS Rα induced by α ∈ S is
given by

Rα = {`→ r | `→ r ∈ R, ` ∈ Tβ , α D β}

Remark 15. The notation D is justified by the fact that Tα 3 s D t ∈ Tβ implies
α D β. Note further that α D β implies Rα ⊇ Rβ , so the maximal induced TRSs
Rα w.r.t. subsets are induced by the maximal sorts α w.r.t. D.

Since only rules from Rα are applicable to terms in Tα, we have the following
lemma.

Lemma 16 (CR on T α by needed rules). The system R is confluent on Tα if
and only if Rα is confluent on Tα.

We formalize the persistent decomposition result as follows.

Theorem 17 (persistent decomposition). Let Σ ⊆ S be a set of sorts with the
property that for each β ∈ S, either Rβ = ∅, or α ∈ Σ for some α D β. Then R
is confluent on T (F ,V) if and only if Rα is confluent on T (F ,V) for all α ∈ Σ.

Since no proof has been given in the literature7 (as far as we know), we include
one here.

7 The proof is not difficult, but as a system description, [2] lacked space for a proof.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#ind:needed_types
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#def:%E2%84%9B_n_%CE%B1
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#def:%E2%84%9B_n_%CE%B1
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#ind:needed_types
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:CR_on_%F0%9D%92%AF_%CE%B1_by_needed_rules
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:persistent_decomposition

Proof. First assume that Rα is confluent on T (F ,V) for all α ∈ Σ. By Theo-
rem 9, confluence of R on T (F ,V) follows if we can show that R is confluent on
Tβ for any β ∈ S. By Lemma 16, this is equivalent to Rβ being confluent on Tβ .
If Rβ = ∅, we are done. Otherwise, by assumption, there is a sort α D β such
that Rα is confluent on T (F ,V). Because Tβ is closed under rewriting by Rα,
Rα is confluent on Tβ , which implies that (Rα)β = Rβ is confluent on Tβ by
Lemma 16 and the fact that Rα is a many-sorted TRS using the same signature
as R.

For the other direction, assume thatR is confluent on T (F ,V). We show that
Rα is confluent on T (F ,V) for all α ∈ S (and in particular those in Σ). Since
Rα is a many-sorted TRS, it is persistent (Theorem 9), so it suffices to show
that Rα is confluent on Tβ for all β ∈ S. So consider a peak t ∗

Rα← s →∗Rα u.
We proceed by induction on s ∈ Tβ .

If s ∈ V then s = t = u and we are done. Otherwise, s = f(s1, . . . , sn) for
some f : β1 × · · · × βn → β, and s1 ∈ Tβ1

, . . . , sn ∈ Tβn . There are two cases.

1. If α D β, then sinceR is confluent on Tβ ,Rβ is confluent on Tβ . By Lemma 16
applied to (Rα)β = Rβ , Rα is confluent on Tβ as well.

2. If α 6D β, then Rα contains no rules whose root symbol has result sort β.
Consequently there cannot be any root steps in t ∗

Rα← s ∗
Rα← u. Hence

we obtain t1, . . . , tn and u1, . . . , un with ti
∗
Rα← si →∗Rα ui for 1 6 i 6 n,

t = f(t1, . . . , tn), and u = f(u1, . . . , un). We conclude by the induction
hypothesis (si is confluent for 1 6 i 6 n). ut

<crProof> or <crDisproof>

<persistentDecomposition>

<manySortedSignature>

<manySortedFunction> (0+) times

<name>

...

<args>

<sort> .. (0+) times

text

<result>

<sort>

text

<component> (1+) times; exactly 1 for <crDisproof>

<trs>

...

<crProof> or <crDisproof>

...

Fig. 6: CPF fragment for persistent decomposition proofs

We further integrated this result into CeTA. To this end, we implemented a
function that computes the maximal sorts (with respect to D) for a given signa-
ture, a check function that checks the preconditions of Theorem 17, and extended
CeTA’s CPF parser with a certificate format for a persistent decomposition (CPF
is an XML format. The fragment for persistent decomposition is given in Fig-
ure 6, and may be of interest to tool authors who want to incorporate certifiable
persistent decomposition into their confluence tools).

6 Currying

Currying is the most complicated application of layer systems that we have for-
malized so far. Currying is a transformation of term rewrite systems in which
applications of n-ary functions are replaced by n applications of a single fresh
binary function symbol to a constant, thereby applying arguments to the func-
tion one by one. More formally, we introduce a fresh function symbol • to denote
application, whereas every other function symbol becomes a constant. We adopt
the convention of writing fn to denote a function symbol of arity n. Moreover,
we denote the arity of a function symbol f with respect to the signature F by
aF (f). We identify faF (f) with f .

Definition 18. Given a TRS R over a signature F , its curried version Cu(R)
consists of rules {Cu(l)→ Cu(r) | `→ r ∈ R}, where Cu(t) = t if t is a variable
and Cu(f(t1, . . . , tn)) = f0 •Cu(t1)• · · ·•Cu(tn). Here • is a fresh left-associative
function symbol.

Currying is useful for deciding properties such as confluence [5] or termina-
tion [10]. For analyzing confluence by currying, the following result is important.

Theorem 19 (main result complete). Let R be a TRS. If R is confluent, then
Cu(R) is confluent.

This result was proved by Kahrs [11]. Rather than working directly with Cu(R),
Kahrs works with the partial parametrization of R, which is given by PP(R) =
R ∪ UF , where UF is the set of uncurrying rules for F (see Definition 20).
Confluence of PP(R) and Cu(R) are closely related, cf. Lemma 21.

Definition 20. Given a signature F , the uncurrying rules UF are rules

fi(x1, . . . , xi) • xi+1 → fi+1(x1, . . . , xi+1)

for every function symbol f ∈ F and 0 6 i < aF (f).

Lemma 21 ([11, Proposition 3.1]). Let R be a TRS. Then Cu(R) is conflu-
ent if PP(R) is.

Hence in order to prove Theorem 19 it suffices to prove that PP(R) is confluent.
To this end, we make use of Theorem 7. Hence we need to show that PP(R) is

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:Cu_R
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:Cu
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:Cu
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:Cu
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:Cu
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:Cu
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:Cu
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#lem:main_result_complete
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:%F0%9D%92%B0

layered according to some set of layers L, and confluent on terms of rank one.
First of all we have to define a suitable set of layers. We choose L = L1 ∪ L2

letting V� = V ∪ {�} and

L1 ::= V� ∪ {fm(s1, . . . , sm) • sm+1 • · · · • sn |
f ∈ F , 0 6 m 6 n 6 aF (f) and s1, . . . , sn ∈ L1}

L2 = {x • t | x ∈ V� and t ∈ L1}

This definition realizes a separation between well-formed terms (L1), whose UF -
normal form contains no • symbol, and ill-formed terms (L2), whose UF -normal
form contains exactly one • symbol at the root. As required for condition (L1),
variables and holes are treated interchangeably.

Whereas for Lemma 21 we could follow the lines of the paper proof, the
formalization of the fact that PP(R) is layered according to L turned out to
be much more tedious. As with the modularity and persistence applications, we
found it convenient to define functions that compute the max-top of a term, since
the abstract definition of max-tops in the layer framework is not really suitable
for proofs in Isabelle.

Definition 22. The following function checks whether the number of arguments
applied to the first non-• function symbol f is at most the arity aF (f) according
to the original signature F

check(t,m) =

false if t ∈ V
check(t1,m+ 1) if t = t1 • t2
aF (f) > m+ n if t = fn(t1, . . . , tn)

Let F• = F ∪ {•}. The max-top mtCu of a term t ∈ T (F•,V) with respect to L
is computed as

mtCu(t) =

t if t ∈ V
f(mt1(t1, 0), . . . ,mt1(tn, 0)) if t = f(t1, . . . , tn)

and (check(t, 0) or t1 ∈ V)

� •mt1(t2, 0) otherwise (in which case t = t1 • t2)

Here mt1(t,m) computes the max-top of t with respect to L1, where m is the
number of already applied arguments:

mt1(t,m) =

t if t ∈ V
mt1(t1,m+ 1) •mt1(t2, 0) if t = t1 • t2 and check(t,m)

f(mt1(t1, 0), . . . ,mt1(tn, 0)) if t = f(t1, . . . , tn), f 6= •
and check(t,m)

� otherwise

Note that there is some redundancy, since the check function does the same
counting several times. It turns out, however, that this redundancy simplifies
later proofs.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#ind:%F0%9D%94%8F
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#ind:%F0%9D%94%8F_1
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#ind:%F0%9D%94%8F_2
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:check_first_non_Ap
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:check_first_non_Ap
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu'
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu'
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:check_first_non_Ap
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu'
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu'
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu'
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:check_first_non_Ap
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu'
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:max_top_cu'
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#def:check_first_non_Ap

After proving the correctness of mt1 and mtCu, the main difficulty was the
proof of condition (C1) for L and PP(R). Similar to Lemma 10, we proved facts
about the interaction of mt1 (and hence mtCu) with contexts and substitutions,
in order to analyze a rewrite step s = C[lσ]p → C[rσ]p with p a function position
of the max-top M of s.

Lemma 23 (push mt in ctxt). Let s be a term and p the hole position of context
C such that C[s]p ∈ T (F•,V) and p ∈ PosF•(mt1(C[s], j)). Then there exists
a context D and a natural number k such that mt1(C[s], j) = D[mt1(s, k)], and
mt1(C[t], j) = D[mt1(t, k)] for any term t ∈ T (F•,V) having the same number
of missing arguments as s.

Lemma 24 (push mt in subst). Let t ∈ T (F ,V). Then mt1(t ·σ, 0) = mt1(t, 0) ·
σ′ with σ′ = (λx.mt1(x, 0)) ◦ σ.

Using these two lemmas, we can obtain the desired rewrite step from M by the
following computation, where for simplicity we only consider the case M ∈ L1

and l→ r ∈ R:

M = mt(s) = mt1(C[l · σ], 0)
23
= D[mt1(l · σ, k)]

24
= D[mt1(l, 0) · σ′] = D[l · σ′]

→p,`→r D[r · σ′] = D[mt1(r, 0) · σ′] 24
= D[mt1(r · σ, k)]

23
= mt1(C[r · σ], 0)

The uses of the previous two lemmas are indicated above the equalities. Note
that the number of missing arguments of r and l are equal (namely 0), so we
can use Lemma 23 in both directions. For the same reason we must have k = 0,
because otherwise mt1(l · σ, k) = �, contradicting the fact that the rewrite step
would take place at a function position of M . Hence Lemma 24 is applicable.
Furthermore, we use mt1(l, 0) = l and mt1(r, 0) = r, using that l and r are well-
formed. At this point we have established (W). For (C1), we analyze the term
mt1(C[r · σ], 0) some more: If C = �, r is a variable and check(r · σ) is false,
mt1(C[r ·σ], 0) = �. Otherwise, the max-top of C[r ·σ] is equal to mt1(C[r ·σ], 0).

Remark 25. As an anonymous reviewer suggested, it would most likely have been
easier to use a different layer system, where each • symbol starts a new layer:

L′1 = T (F ,V�)

L′2 = {fm(s1, . . . , sm) • sm+1 | f ∈ F , 0 6 m < aF (f) and s1, . . . , sm+1 ∈ L′1}
L′3 = {x • y | x, y ∈ V�} ∪

{fm(x1, . . . , xm) | f ∈ F , 0 6 m < aF (f) and x1, . . . , xm ∈ V�}

This would have avoided the complications of counting the number of “missing”
arguments in the check function. Unfortunately we did not find this idea be-
fore starting our formalization. Adapting the existing formalization accordingly
would be a substantial effort with no obvious gain—the final result would still
be that currying preserves confluence.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#lem:push_mt_in_ctxt
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#lem:push_mt_in_subst

topic lines dB factor

definitions, basic facts about layers 3.2k 20
Theorem 7 2.0k 13
modularity 0.8k 30
persistence 1.5k 55
currying 3.8k 40
executable persistence check 0.6k —

total 12k

Fig. 7: Formalization effort (dB = de Bruijn)

7 Conclusion

We have presented a formalization of modularity, persistence, and currying, in
the Isabelle proof assistant. The formalization spans about 12k lines of theory
files and took approximately 9 person-months to develop. A breakdown of the
effort is given in Figure 7. (Note that modularity is subsumed by persistence.
We formalized modularity first because it is the easiest application. Many proof
ideas for modularity carried over to the other, more difficult applications.) The
de Bruijn factor (which compares the size of the formalized proof to the paper
version) varies wildly. We believe that the main reason for this is that the level
of detail for proofs in [7] varies greatly; the core confluence proof (leading up
to Theorem 7) is carried out in much more detail than the applications, where
large parts of the proofs rely on the reader’s intuition. A second contributing
factor is that two people worked on different parts of the formalization.

As far as we know, this is the first formalization of modularity of confluence
in any proof assistant. We would like to point out that even though the con-
fluence proof for layer systems is based on a constructive proof of modularity
of confluence [17], the formalized result is not constructive. This is because Is-
abelle/HOL is a classical logic. Producing a constructive proof in Isabelle/HOL
would have to rely on discipline (including the avoidance of proof automation
tools like Metis that are based on Skolemization). In fact, since the proof factors
through decreasing diagrams (which were already part of the Archive of Formal
Proofs [6]), we would first need a constructive proof for confluence by decreasing
diagrams. In the end we would not reap any benefits from having a constructive
proof (namely, an executable confluence result).

We integrated the persistence result into our theorem prover CSI (which
already supported order-sorted persistence, so the main effort for extending CSI
was adding the XML output.) We present experimental results in Figure 8.
The check mark X indicates certified strategies; CSIXand +pdXare the certified
strategies with and without persistent decomposition, respectively, while CSI
refers to the uncertified, full strategy of CSI. As can be seen from the data, we
have achieved a modest improvement in certified proofs over the Cops database

CSIX +pdX CSI

yes 148 154 244
no 162 162 162

maybe 127 121 31

total 437 437 437

Fig. 8: Impact of persistent decomposition on certifiable proofs by CSI.

of confluence problems.8 It is worth noting that there is no progress in certified
non-confluence proofs; in fact, there is no certification gap for non-confluence
at all. For non-confluence, CSI employs tree automata [8], which (in theory,
and evidently also in practice) subsume the many-sorted decomposition result,
because many-sorted terms are a regular tree language.

There are several parts of [7] that have not yet been formalized. For one,
there are two more applications of layer systems, namely modularity of layer-
preserving composable TRSs, and a modularity result for quasi-ground systems.
The bigger missing part are variable-restricted layer systems, which are the foun-
dation for a generalized persistence result with ordered sorts [7, Theorem 6.3].
Furthermore, while we have formalized preservation of confluence by currying,
this is not integrated into CeTA. As far as we know, no confluence tool currently
uses currying directly. However, currying is the basis of efficient decision pro-
cedures for ground TRSs, which are implemented in CSI, and are a target for
future formalization efforts.

References

1. Aoto, T., Toyama, Y.: Extending persistency of confluence with ordered sorts.
Tech. Rep. IS-RR-96-0025F, School of Information Science, JAIST (1996)

2. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems
automatically. In: Proc. 20th RTA. LNCS, vol. 5595, pp. 93–102 (2009), doi: 10.
1007/978-3-642-02348-4_7

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998), doi: 10.1017/CBO9781139172752

4. Ballarin, C.: Locales: A module system for mathematical theories. JAR 52(2),
123–153 (2014)

5. Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time.
In: Proc. 23rd RTA. LIPIcs, vol. 15, pp. 165–175 (2012), doi: 10.4230/LIPIcs.RTA.
2012.165

6. Felgenhauer, B.: Decreasing diagrams II. AFP (Aug 2015), formal proof develop-
ment, https://www.isa-afp.org/entries/Decreasing-Diagrams-II.html

7. Felgenhauer, B., Middeldorp, A., Zankl, H., van Oostrom, V.: Layer systems for
proving confluence. ACM TOCL 16(2:14), 1–32 (2015), doi: 10.1145/2710017

8 full results are available at http://cl-informatik.uibk.ac.at/software/lisa/

ictac2018/.

http://dx.doi.org/10.1007/978-3-642-02348-4_7
http://dx.doi.org/10.1007/978-3-642-02348-4_7
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.165
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.165
https://www.isa-afp.org/entries/Decreasing-Diagrams-II.html
http://dx.doi.org/10.1145/2710017
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/

8. Felgenhauer, B., Thiemann, R.: Reachability, confluence, and termination analysis
with state-compatible automata. I&C 253(3), 467–483 (2017), doi: 10.1016/j.ic.
2016.06.011

9. Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF, LNCS, vol. 78. Springer
(1979), doi: 10.1007/3-540-09724-4

10. Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination. In: Proc.
15th LPAR. pp. 667–681 (2008)

11. Kahrs, S.: Confluence of curried term-rewriting systems. JSC 19(6), 601–623
(1995), doi: 10.1006/jsco.1995.1035

12. Kitahara, A., Sakai, M., Toyama, Y.: On the modularity of confluent term rewriting
systems with shared constructors. Technical Reports of the Information Processing
Society of Japan 95(15), 11–20 (1995), in Japanese

13. Klop, J., Middeldorp, A., Toyama, Y., de Vrijer, R.: Modularity of confluence: A
simplified proof. IPL 49, 101–109 (1994), doi: 10.1016/0020-0190(94)90034-5

14. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: New evidence – A progress report.
In: Proc. 26th CADE. LNCS (LNAI), vol. 10395, pp. 385–397 (2017), doi: 10.1007/
978-3-319-63046-5_24

15. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, LNCS, vol. 2283. Springer (2002), doi: 10.1007/3-540-45949-9

16. Ohlebusch, E.: Modular Properties of Composable Term Rewriting Systems. Ph.D.
thesis, Universität Bielefeld (1994)

17. van Oostrom, V.: Modularity of confluence constructed. In: Proc. 4th IJCAR.
LNCS (LNAI), vol. 5195, pp. 348–363 (2008), doi: 10.1007/978-3-540-71070-7_
31

18. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA.
In: Proc. 22nd TPHOLs. LNCS, vol. 5674, pp. 452–468 (2009), doi: 10.1007/
978-3-642-03359-9_31

19. Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting
systems. JACM 34(1), 128–143 (1987), doi: 10.1145/7531.7534

20. Wenzel, M.: Isar - A generic interpretative approach to readable formal proof docu-
ments. In: Proc. 12th TPHOLs. pp. 167–184 (1999), doi: 10.1007/3-540-48256-3_
12

http://dx.doi.org/10.1016/j.ic.2016.06.011
http://dx.doi.org/10.1016/j.ic.2016.06.011
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.1006/jsco.1995.1035
http://dx.doi.org/10.1016/0020-0190(94)90034-5
http://dx.doi.org/10.1007/978-3-319-63046-5_24
http://dx.doi.org/10.1007/978-3-319-63046-5_24
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-540-71070-7_31
http://dx.doi.org/10.1007/978-3-540-71070-7_31
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1145/7531.7534
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/3-540-48256-3_12

	Layer Systems for Confluence — Formalized

