WORST_CASE(?,O(n^1))
* Step 1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(x,h1(y,z)) -> h2(0(),x,h1(y,z))
            f(j(x,y),y) -> g(f(x,k(y)))
            g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u))
            h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u))
            i(f(x,h(y))) -> y
            i(h2(s(x),y,h1(x,z))) -> z
            k(h(x)) -> h1(0(),x)
            k(h1(x,y)) -> h1(s(x),y)
        - Signature:
            {f/2,g/1,h2/3,i/1,k/1} / {0/0,h/1,h1/2,j/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,h2,i,k} and constructors {0,h,h1,j,s}
    + Applied Processor:
        NaturalPI {shape = StronglyLinear, restrict = NoRestrict, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(stronglyLinear):
        The following argument positions are considered usable:
          uargs(f) = {2},
          uargs(g) = {1}
        
        Following symbols are considered usable:
          {f,g,h2,i,k}
        TcT has computed the following interpretation:
           p(0) = 4          
           p(f) = 1 + x1 + x2
           p(g) = 1 + x1     
           p(h) = 4 + x1     
          p(h1) = x2         
          p(h2) = x2 + x3    
           p(i) = 1 + x1     
           p(j) = 4 + x1     
           p(k) = 1 + x1     
           p(s) = 0          
        
        Following rules are strictly oriented:
                      f(x,h1(y,z)) = 1 + x + z            
                                   > x + z                
                                   = h2(0(),x,h1(y,z))    
        
                       f(j(x,y),y) = 5 + x + y            
                                   > 3 + x + y            
                                   = g(f(x,k(y)))         
        
                g(h2(x,y,h1(z,u))) = 1 + u + y            
                                   > u + y                
                                   = h2(s(x),y,h1(z,u))   
        
        h2(x,j(y,h1(z,u)),h1(z,u)) = 4 + u + y            
                                   > u + y                
                                   = h2(s(x),y,h1(s(z),u))
        
                      i(f(x,h(y))) = 6 + x + y            
                                   > y                    
                                   = y                    
        
             i(h2(s(x),y,h1(x,z))) = 1 + y + z            
                                   > z                    
                                   = z                    
        
                           k(h(x)) = 5 + x                
                                   > x                    
                                   = h1(0(),x)            
        
                        k(h1(x,y)) = 1 + y                
                                   > y                    
                                   = h1(s(x),y)           
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))