WORST_CASE(?,O(n^3)) * Step 1: NaturalMI WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: NaturalMI {miDimension = 3, miDegree = 3, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__from,a__length,a__length1,mark} TcT has computed the following interpretation: p(0) = [0] [1] [0] p(a__from) = [1 2 0] [1] [0 1 0] x1 + [3] [2 1 0] [2] p(a__length) = [0 0 3] [1] [0 0 2] x1 + [2] [0 0 0] [0] p(a__length1) = [0 0 3] [2] [0 0 2] x1 + [2] [0 0 1] [0] p(cons) = [1 1 0] [0 0 2] [0] [0 1 0] x1 + [0 0 0] x2 + [2] [0 0 0] [0 0 1] [2] p(from) = [1 2 0] [0] [0 1 0] x1 + [3] [0 0 0] [0] p(length) = [0 0 2] [0] [0 0 2] x1 + [2] [0 0 0] [0] p(length1) = [0 0 1] [1] [0 0 2] x1 + [2] [0 0 0] [0] p(mark) = [1 1 0] [0] [0 1 0] x1 + [0] [2 1 0] [0] p(nil) = [2] [1] [0] p(s) = [1 0 0] [3] [0 1 0] x1 + [1] [0 0 0] [0] Following rules are strictly oriented: a__from(X) = [1 2 0] [1] [0 1 0] X + [3] [2 1 0] [2] > [1 2 0] [0] [0 1 0] X + [2] [0 0 0] [2] = cons(mark(X),from(s(X))) a__from(X) = [1 2 0] [1] [0 1 0] X + [3] [2 1 0] [2] > [1 2 0] [0] [0 1 0] X + [3] [0 0 0] [0] = from(X) a__length(X) = [0 0 3] [1] [0 0 2] X + [2] [0 0 0] [0] > [0 0 2] [0] [0 0 2] X + [2] [0 0 0] [0] = length(X) a__length(cons(X,Y)) = [0 0 3] [7] [0 0 2] Y + [6] [0 0 0] [0] > [0 0 3] [5] [0 0 2] Y + [3] [0 0 0] [0] = s(a__length1(Y)) a__length(nil()) = [1] [2] [0] > [0] [1] [0] = 0() a__length1(X) = [0 0 3] [2] [0 0 2] X + [2] [0 0 1] [0] > [0 0 3] [1] [0 0 2] X + [2] [0 0 0] [0] = a__length(X) a__length1(X) = [0 0 3] [2] [0 0 2] X + [2] [0 0 1] [0] > [0 0 1] [1] [0 0 2] X + [2] [0 0 0] [0] = length1(X) mark(0()) = [1] [1] [1] > [0] [1] [0] = 0() mark(cons(X1,X2)) = [1 2 0] [0 0 2] [2] [0 1 0] X1 + [0 0 0] X2 + [2] [2 3 0] [0 0 4] [2] > [1 2 0] [0 0 2] [0] [0 1 0] X1 + [0 0 0] X2 + [2] [0 0 0] [0 0 1] [2] = cons(mark(X1),X2) mark(from(X)) = [1 3 0] [3] [0 1 0] X + [3] [2 5 0] [3] > [1 3 0] [1] [0 1 0] X + [3] [2 3 0] [2] = a__from(mark(X)) mark(length(X)) = [0 0 4] [2] [0 0 2] X + [2] [0 0 6] [2] > [0 0 3] [1] [0 0 2] X + [2] [0 0 0] [0] = a__length(X) mark(length1(X)) = [0 0 3] [3] [0 0 2] X + [2] [0 0 4] [4] > [0 0 3] [2] [0 0 2] X + [2] [0 0 1] [0] = a__length1(X) mark(nil()) = [3] [1] [5] > [2] [1] [0] = nil() mark(s(X)) = [1 1 0] [4] [0 1 0] X + [1] [2 1 0] [7] > [1 1 0] [3] [0 1 0] X + [1] [0 0 0] [0] = s(mark(X)) Following rules are (at-least) weakly oriented: WORST_CASE(?,O(n^3))