WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(g(n__f(X))))
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,h} and constructors {g,n__d,n__f}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(d) = {1}
        
        Following symbols are considered usable:
          {activate,c,d,f,h}
        TcT has computed the following interpretation:
          p(activate) = [1] x1 + [8] 
                 p(c) = [1] x1 + [11]
                 p(d) = [1] x1 + [2] 
                 p(f) = [1] x1 + [11]
                 p(g) = [0]          
                 p(h) = [1] x1 + [15]
              p(n__d) = [1] x1 + [0] 
              p(n__f) = [1] x1 + [5] 
        
        Following rules are strictly oriented:
              activate(X) = [1] X + [8]        
                          > [1] X + [0]        
                          = X                  
        
        activate(n__d(X)) = [1] X + [8]        
                          > [1] X + [2]        
                          = d(X)               
        
        activate(n__f(X)) = [1] X + [13]       
                          > [1] X + [11]       
                          = f(X)               
        
                     c(X) = [1] X + [11]       
                          > [1] X + [10]       
                          = d(activate(X))     
        
                     d(X) = [1] X + [2]        
                          > [1] X + [0]        
                          = n__d(X)            
        
                     f(X) = [1] X + [11]       
                          > [1] X + [5]        
                          = n__f(X)            
        
                  f(f(X)) = [1] X + [22]       
                          > [16]               
                          = c(n__f(g(n__f(X))))
        
                     h(X) = [1] X + [15]       
                          > [1] X + [11]       
                          = c(n__d(X))         
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))