WORST_CASE(?,O(n^1)) * Step 1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__add(X1,X2)) -> add(X1,X2) activate(n__from(X)) -> from(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__len(X)) -> len(X) add(X1,X2) -> n__add(X1,X2) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) fst(X1,X2) -> n__fst(X1,X2) fst(0(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) len(X) -> n__len(X) len(cons(X,Z)) -> s(n__len(activate(Z))) len(nil()) -> 0() - Signature: {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len} and constructors {0,cons ,n__add,n__from,n__fst,n__len,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(n__add) = {1}, uargs(n__fst) = {1,2}, uargs(n__len) = {1}, uargs(s) = {1} Following symbols are considered usable: {activate,add,from,fst,len} TcT has computed the following interpretation: p(0) = [0] p(activate) = [8] x1 + [12] p(add) = [8] x1 + [2] x2 + [6] p(cons) = [1] x2 + [2] p(from) = [3] p(fst) = [8] x1 + [8] x2 + [5] p(len) = [8] x1 + [4] p(n__add) = [1] x1 + [1] x2 + [0] p(n__from) = [0] p(n__fst) = [1] x1 + [1] x2 + [0] p(n__len) = [1] x1 + [2] p(nil) = [3] p(s) = [1] x1 + [1] Following rules are strictly oriented: activate(X) = [8] X + [12] > [1] X + [0] = X activate(n__add(X1,X2)) = [8] X1 + [8] X2 + [12] > [8] X1 + [2] X2 + [6] = add(X1,X2) activate(n__from(X)) = [12] > [3] = from(X) activate(n__fst(X1,X2)) = [8] X1 + [8] X2 + [12] > [8] X1 + [8] X2 + [5] = fst(X1,X2) activate(n__len(X)) = [8] X + [28] > [8] X + [4] = len(X) add(X1,X2) = [8] X1 + [2] X2 + [6] > [1] X1 + [1] X2 + [0] = n__add(X1,X2) add(0(),X) = [2] X + [6] > [1] X + [0] = X add(s(X),Y) = [8] X + [2] Y + [14] > [8] X + [1] Y + [13] = s(n__add(activate(X),Y)) from(X) = [3] > [2] = cons(X,n__from(s(X))) from(X) = [3] > [0] = n__from(X) fst(X1,X2) = [8] X1 + [8] X2 + [5] > [1] X1 + [1] X2 + [0] = n__fst(X1,X2) fst(0(),Z) = [8] Z + [5] > [3] = nil() fst(s(X),cons(Y,Z)) = [8] X + [8] Z + [29] > [8] X + [8] Z + [26] = cons(Y,n__fst(activate(X),activate(Z))) len(X) = [8] X + [4] > [1] X + [2] = n__len(X) len(cons(X,Z)) = [8] Z + [20] > [8] Z + [15] = s(n__len(activate(Z))) len(nil()) = [28] > [0] = 0() Following rules are (at-least) weakly oriented: WORST_CASE(?,O(n^1))