WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__fst(X1,X2)) -> fst(X1,X2)
            activate(n__len(X)) -> len(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            add(s(X),Y) -> s(n__add(activate(X),Y))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,nil,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__add) = {1},
          uargs(n__fst) = {1,2},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {activate,add,from,fst,len}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [8] x1 + [12]        
               p(add) = [8] x1 + [2] x2 + [6]
              p(cons) = [1] x2 + [2]         
              p(from) = [3]                  
               p(fst) = [8] x1 + [8] x2 + [5]
               p(len) = [8] x1 + [4]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [0]                  
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [2]         
               p(nil) = [3]                  
                 p(s) = [1] x1 + [1]         
        
        Following rules are strictly oriented:
                    activate(X) = [8] X + [12]                           
                                > [1] X + [0]                            
                                = X                                      
        
        activate(n__add(X1,X2)) = [8] X1 + [8] X2 + [12]                 
                                > [8] X1 + [2] X2 + [6]                  
                                = add(X1,X2)                             
        
           activate(n__from(X)) = [12]                                   
                                > [3]                                    
                                = from(X)                                
        
        activate(n__fst(X1,X2)) = [8] X1 + [8] X2 + [12]                 
                                > [8] X1 + [8] X2 + [5]                  
                                = fst(X1,X2)                             
        
            activate(n__len(X)) = [8] X + [28]                           
                                > [8] X + [4]                            
                                = len(X)                                 
        
                     add(X1,X2) = [8] X1 + [2] X2 + [6]                  
                                > [1] X1 + [1] X2 + [0]                  
                                = n__add(X1,X2)                          
        
                     add(0(),X) = [2] X + [6]                            
                                > [1] X + [0]                            
                                = X                                      
        
                    add(s(X),Y) = [8] X + [2] Y + [14]                   
                                > [8] X + [1] Y + [13]                   
                                = s(n__add(activate(X),Y))               
        
                        from(X) = [3]                                    
                                > [2]                                    
                                = cons(X,n__from(s(X)))                  
        
                        from(X) = [3]                                    
                                > [0]                                    
                                = n__from(X)                             
        
                     fst(X1,X2) = [8] X1 + [8] X2 + [5]                  
                                > [1] X1 + [1] X2 + [0]                  
                                = n__fst(X1,X2)                          
        
                     fst(0(),Z) = [8] Z + [5]                            
                                > [3]                                    
                                = nil()                                  
        
            fst(s(X),cons(Y,Z)) = [8] X + [8] Z + [29]                   
                                > [8] X + [8] Z + [26]                   
                                = cons(Y,n__fst(activate(X),activate(Z)))
        
                         len(X) = [8] X + [4]                            
                                > [1] X + [2]                            
                                = n__len(X)                              
        
                 len(cons(X,Z)) = [8] Z + [20]                           
                                > [8] Z + [15]                           
                                = s(n__len(activate(Z)))                 
        
                     len(nil()) = [28]                                   
                                > [0]                                    
                                = 0()                                    
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))