WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__tail(X) -> tail(X)
            a__tail(cons(X,XS)) -> mark(XS)
            a__zeros() -> cons(0(),zeros())
            a__zeros() -> zeros()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(tail(X)) -> a__tail(mark(X))
            mark(zeros()) -> a__zeros()
        - Signature:
            {a__tail/1,a__zeros/0,mark/1} / {0/0,cons/2,tail/1,zeros/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__tail,a__zeros,mark} and constructors {0,cons,tail
            ,zeros}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__tail) = {1},
          uargs(cons) = {1}
        
        Following symbols are considered usable:
          {a__tail,a__zeros,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                      
                        [0]                      
           p(a__tail) = [1 0] x1 + [4]           
                        [0 1]      [6]           
          p(a__zeros) = [3]                      
                        [4]                      
              p(cons) = [1 0] x1 + [0 1] x2 + [2]
                        [0 1]      [0 1]      [4]
              p(mark) = [0 1] x1 + [4]           
                        [0 1]      [4]           
              p(tail) = [0 0] x1 + [0]           
                        [0 1]      [6]           
             p(zeros) = [1]                      
                        [0]                      
        
        Following rules are strictly oriented:
                 a__tail(X) = [1 0] X + [4]            
                              [0 1]     [6]            
                            > [0 0] X + [0]            
                              [0 1]     [6]            
                            = tail(X)                  
        
        a__tail(cons(X,XS)) = [1 0] X + [0 1] XS + [6] 
                              [0 1]     [0 1]      [10]
                            > [0 1] XS + [4]           
                              [0 1]      [4]           
                            = mark(XS)                 
        
                 a__zeros() = [3]                      
                              [4]                      
                            > [2]                      
                              [4]                      
                            = cons(0(),zeros())        
        
                 a__zeros() = [3]                      
                              [4]                      
                            > [1]                      
                              [0]                      
                            = zeros()                  
        
                  mark(0()) = [4]                      
                              [4]                      
                            > [0]                      
                              [0]                      
                            = 0()                      
        
          mark(cons(X1,X2)) = [0 1] X1 + [0 1] X2 + [8]
                              [0 1]      [0 1]      [8]
                            > [0 1] X1 + [0 1] X2 + [6]
                              [0 1]      [0 1]      [8]
                            = cons(mark(X1),X2)        
        
              mark(tail(X)) = [0 1] X + [10]           
                              [0 1]     [10]           
                            > [0 1] X + [8]            
                              [0 1]     [10]           
                            = a__tail(mark(X))         
        
              mark(zeros()) = [4]                      
                              [4]                      
                            > [3]                      
                              [4]                      
                            = a__zeros()               
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))