WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
            2nd(cons1(X,cons(Y,Z))) -> Y
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,from/1} / {cons/2,cons1/2,n__from/1,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from} and constructors {cons,cons1,n__from
            ,s}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(2nd) = {1},
          uargs(cons1) = {2}
        
        Following symbols are considered usable:
          {2nd,activate,from}
        TcT has computed the following interpretation:
               p(2nd) = [1 4] x1 + [1]           
                        [4 4]      [6]           
          p(activate) = [1 1] x1 + [2]           
                        [0 1]      [1]           
              p(cons) = [1 2] x1 + [1 1] x2 + [0]
                        [0 0]      [0 0]      [2]
             p(cons1) = [1 2] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
              p(from) = [1 2] x1 + [4]           
                        [0 0]      [4]           
           p(n__from) = [1 2] x1 + [0]           
                        [0 0]      [3]           
                 p(s) = [0]                      
                        [0]                      
        
        Following rules are strictly oriented:
                2nd(cons(X,X1)) = [1 2] X + [1 1] X1 + [9]         
                                  [4 8]     [4 4]      [14]        
                                > [1 2] X + [1 1] X1 + [3]         
                                  [4 8]     [4 4]      [14]        
                                = 2nd(cons1(X,activate(X1)))       
        
        2nd(cons1(X,cons(Y,Z))) = [1 2] X + [1 2] Y + [1 1] Z + [1]
                                  [4 8]     [4 8]     [4 4]     [6]
                                > [1 0] Y + [0]                    
                                  [0 1]     [0]                    
                                = Y                                
        
                    activate(X) = [1 1] X + [2]                    
                                  [0 1]     [1]                    
                                > [1 0] X + [0]                    
                                  [0 1]     [0]                    
                                = X                                
        
           activate(n__from(X)) = [1 2] X + [5]                    
                                  [0 0]     [4]                    
                                > [1 2] X + [4]                    
                                  [0 0]     [4]                    
                                = from(X)                          
        
                        from(X) = [1 2] X + [4]                    
                                  [0 0]     [4]                    
                                > [1 2] X + [3]                    
                                  [0 0]     [2]                    
                                = cons(X,n__from(s(X)))            
        
                        from(X) = [1 2] X + [4]                    
                                  [0 0]     [4]                    
                                > [1 2] X + [0]                    
                                  [0 0]     [3]                    
                                = n__from(X)                       
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))