WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__f(X) -> f(X)
            a__f(X) -> g(h(f(X)))
            mark(f(X)) -> a__f(mark(X))
            mark(g(X)) -> g(X)
            mark(h(X)) -> h(mark(X))
        - Signature:
            {a__f/1,mark/1} / {f/1,g/1,h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {f,g,h}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__f) = {1},
          uargs(h) = {1}
        
        Following symbols are considered usable:
          {a__f,mark}
        TcT has computed the following interpretation:
          p(a__f) = [1] x1 + [12]
             p(f) = [1] x1 + [8] 
             p(g) = [9]          
             p(h) = [1] x1 + [1] 
          p(mark) = [2] x1 + [0] 
        
        Following rules are strictly oriented:
           a__f(X) = [1] X + [12] 
                   > [1] X + [8]  
                   = f(X)         
        
           a__f(X) = [1] X + [12] 
                   > [9]          
                   = g(h(f(X)))   
        
        mark(f(X)) = [2] X + [16] 
                   > [2] X + [12] 
                   = a__f(mark(X))
        
        mark(g(X)) = [18]         
                   > [9]          
                   = g(X)         
        
        mark(h(X)) = [2] X + [2]  
                   > [2] X + [1]  
                   = h(mark(X))   
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))