WORST_CASE(?,O(n^2)) * Step 1: NaturalMI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: {gcd,if_gcd,le,minus} TcT has computed the following interpretation: p(0) = [2] [2] p(false) = [1] [0] p(gcd) = [1 2] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] p(if_gcd) = [2 0] x1 + [1 0] x2 + [1 0] x3 + [2] [0 0] [0 1] [0 1] [1] p(le) = [0 0] x1 + [0 1] x2 + [1] [1 0] [0 4] [0] p(minus) = [1 0] x1 + [1] [0 1] [0] p(s) = [1 2] x1 + [1] [0 1] [2] p(true) = [0] [0] Following rules are strictly oriented: gcd(0(),y) = [1 0] y + [7] [0 1] [3] > [1 0] y + [0] [0 1] [0] = y gcd(s(x),0()) = [1 4] x + [8] [0 1] [5] > [1 2] x + [1] [0 1] [2] = s(x) gcd(s(x),s(y)) = [1 4] x + [1 2] y + [7] [0 1] [0 1] [5] > [1 4] x + [1 2] y + [6] [0 1] [0 1] [5] = if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) = [1 2] x + [1 2] y + [6] [0 1] [0 1] [5] > [1 2] x + [1 2] y + [3] [0 1] [0 1] [3] = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = [1 2] x + [1 2] y + [4] [0 1] [0 1] [5] > [1 2] x + [1 2] y + [3] [0 1] [0 1] [3] = gcd(minus(x,y),s(y)) le(0(),y) = [0 1] y + [1] [0 4] [2] > [0] [0] = true() le(s(x),0()) = [0 0] x + [3] [1 2] [9] > [1] [0] = false() le(s(x),s(y)) = [0 0] x + [0 1] y + [3] [1 2] [0 4] [9] > [0 0] x + [0 1] y + [1] [1 0] [0 4] [0] = le(x,y) minus(x,0()) = [1 0] x + [1] [0 1] [0] > [1 0] x + [0] [0 1] [0] = x minus(s(x),s(y)) = [1 2] x + [2] [0 1] [2] > [1 0] x + [1] [0 1] [0] = minus(x,y) Following rules are (at-least) weakly oriented: WORST_CASE(?,O(n^2))