WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            goal(xs) -> ordered(xs)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            ordered(Cons(x,Nil())) -> True()
            ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
            ordered(Nil()) -> True()
        - Weak TRS:
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            ordered[Ite](False(),xs) -> False()
            ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs)
        - Signature:
            {</2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0
            ,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(ordered[Ite]) = {1}
        
        Following symbols are considered usable:
          {<,goal,notEmpty,ordered,ordered[Ite]}
        TcT has computed the following interpretation:
                     p(0) = [1]                  
                     p(<) = [0]                  
                  p(Cons) = [1] x2 + [8]         
                 p(False) = [0]                  
                   p(Nil) = [15]                 
                     p(S) = [1] x1 + [1]         
                  p(True) = [0]                  
                  p(goal) = [1] x1 + [3]         
              p(notEmpty) = [2] x1 + [0]         
               p(ordered) = [1] x1 + [1]         
          p(ordered[Ite]) = [8] x1 + [1] x2 + [0]
        
        Following rules are strictly oriented:
                            goal(xs) = [1] xs + [3]                             
                                     > [1] xs + [1]                             
                                     = ordered(xs)                              
        
                notEmpty(Cons(x,xs)) = [2] xs + [16]                            
                                     > [0]                                      
                                     = True()                                   
        
                     notEmpty(Nil()) = [30]                                     
                                     > [0]                                      
                                     = False()                                  
        
              ordered(Cons(x,Nil())) = [24]                                     
                                     > [0]                                      
                                     = True()                                   
        
        ordered(Cons(x',Cons(x,xs))) = [1] xs + [17]                            
                                     > [1] xs + [16]                            
                                     = ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
        
                      ordered(Nil()) = [16]                                     
                                     > [0]                                      
                                     = True()                                   
        
        
        Following rules are (at-least) weakly oriented:
                                        <(x,0()) =  [0]          
                                                 >= [0]          
                                                 =  False()      
        
                                     <(0(),S(y)) =  [0]          
                                                 >= [0]          
                                                 =  True()       
        
                                    <(S(x),S(y)) =  [0]          
                                                 >= [0]          
                                                 =  <(x,y)       
        
                        ordered[Ite](False(),xs) =  [1] xs + [0] 
                                                 >= [0]          
                                                 =  False()      
        
        ordered[Ite](True(),Cons(x',Cons(x,xs))) =  [1] xs + [16]
                                                 >= [1] xs + [1] 
                                                 =  ordered(xs)  
        

WORST_CASE(?,O(n^1))