WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(s(X)) -> f(X)
            g(cons(0(),Y)) -> g(Y)
            g(cons(s(X),Y)) -> s(X)
            h(cons(X,Y)) -> h(g(cons(X,Y)))
        - Signature:
            {f/1,g/1,h/1} / {0/0,cons/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,h} and constructors {0,cons,s}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(h) = {1}
        
        Following symbols are considered usable:
          {f,g,h}
        TcT has computed the following interpretation:
             p(0) = [1]                      
                    [1]                      
          p(cons) = [0 2] x1 + [0 2] x2 + [2]
                    [0 1]      [0 1]      [0]
             p(f) = [0 2] x1 + [0]           
                    [0 1]      [4]           
             p(g) = [0 2] x1 + [1]           
                    [0 2]      [0]           
             p(h) = [4 0] x1 + [0]           
                    [1 0]      [0]           
             p(s) = [0 0] x1 + [6]           
                    [0 1]      [4]           
        
        Following rules are strictly oriented:
                f(s(X)) = [0 2] X + [8]          
                          [0 1]     [8]          
                        > [0 2] X + [0]          
                          [0 1]     [4]          
                        = f(X)                   
        
         g(cons(0(),Y)) = [0 2] Y + [3]          
                          [0 2]     [2]          
                        > [0 2] Y + [1]          
                          [0 2]     [0]          
                        = g(Y)                   
        
        g(cons(s(X),Y)) = [0 2] X + [0 2] Y + [9]
                          [0 2]     [0 2]     [8]
                        > [0 0] X + [6]          
                          [0 1]     [4]          
                        = s(X)                   
        
           h(cons(X,Y)) = [0 8] X + [0 8] Y + [8]
                          [0 2]     [0 2]     [2]
                        > [0 8] X + [0 8] Y + [4]
                          [0 2]     [0 2]     [1]
                        = h(g(cons(X,Y)))        
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))