WORST_CASE(?,O(n^1)) * Step 1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {n__a,n__f,n__g} + Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(f) = {1}, uargs(n__g) = {1} Following symbols are considered usable: {a,activate,f,g} TcT has computed the following interpretation: p(a) = [7] [1] p(activate) = [1 4] x1 + [3] [1 2] [4] p(f) = [1 4] x1 + [2] [1 3] [4] p(g) = [1 0] x1 + [4] [0 0] [0] p(n__a) = [5] [0] p(n__f) = [1 4] x1 + [1] [0 0] [1] p(n__g) = [1 0] x1 + [2] [0 0] [0] Following rules are strictly oriented: a() = [7] [1] > [5] [0] = n__a() activate(X) = [1 4] X + [3] [1 2] [4] > [1 0] X + [0] [0 1] [0] = X activate(n__a()) = [8] [9] > [7] [1] = a() activate(n__f(X)) = [1 4] X + [8] [1 4] [7] > [1 4] X + [2] [1 3] [4] = f(X) activate(n__g(X)) = [1 0] X + [5] [1 0] [6] > [1 0] X + [4] [0 0] [0] = g(X) f(X) = [1 4] X + [2] [1 3] [4] > [1 4] X + [1] [0 0] [1] = n__f(X) f(n__f(n__a())) = [12] [13] > [11] [13] = f(n__g(f(n__a()))) g(X) = [1 0] X + [4] [0 0] [0] > [1 0] X + [2] [0 0] [0] = n__g(X) Following rules are (at-least) weakly oriented: WORST_CASE(?,O(n^1))