WORST_CASE(?,O(n^1)) * Step 1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) f(X) -> n__f(X) f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() s(X) -> n__s(X) - Signature: {0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(f) = {1}, uargs(s) = {1} Following symbols are considered usable: {0,activate,f,p,s} TcT has computed the following interpretation: p(0) = [5] p(activate) = [5] x1 + [1] p(cons) = [8] p(f) = [1] x1 + [4] p(n__0) = [1] p(n__f) = [1] x1 + [1] p(n__s) = [1] x1 + [4] p(p) = [7] p(s) = [1] x1 + [11] Following rules are strictly oriented: 0() = [5] > [1] = n__0() activate(X) = [5] X + [1] > [1] X + [0] = X activate(n__0()) = [6] > [5] = 0() activate(n__f(X)) = [5] X + [6] > [5] X + [5] = f(activate(X)) activate(n__s(X)) = [5] X + [21] > [5] X + [12] = s(activate(X)) f(X) = [1] X + [4] > [1] X + [1] = n__f(X) f(0()) = [9] > [8] = cons(0(),n__f(n__s(n__0()))) f(s(0())) = [20] > [11] = f(p(s(0()))) p(s(0())) = [7] > [5] = 0() s(X) = [1] X + [11] > [1] X + [4] = n__s(X) Following rules are (at-least) weakly oriented: WORST_CASE(?,O(n^1))