WORST_CASE(?,O(n^2))
* Step 1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            if_mod(false(),s(x),s(y)) -> s(x)
            if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            mod(0(),y) -> 0()
            mod(s(x),0()) -> 0()
            mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
        - Signature:
            {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if_mod,le,minus,mod} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalPI {shape = Quadratic, restrict = NoRestrict, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(quadratic):
        The following argument positions are considered usable:
          uargs(if_mod) = {1},
          uargs(mod) = {1}
        
        Following symbols are considered usable:
          {if_mod,le,minus,mod}
        TcT has computed the following interpretation:
               p(0) = 0                 
           p(false) = 1                 
          p(if_mod) = 2*x1 + 3*x2 + x2^2
              p(le) = 2 + x2            
           p(minus) = 1 + x1            
             p(mod) = 1 + 5*x1 + x1^2   
               p(s) = 2 + x1            
            p(true) = 0                 
        
        Following rules are strictly oriented:
        if_mod(false(),s(x),s(y)) = 12 + 7*x + x^2           
                                  > 2 + x                    
                                  = s(x)                     
        
         if_mod(true(),s(x),s(y)) = 10 + 7*x + x^2           
                                  > 7 + 7*x + x^2            
                                  = mod(minus(x,y),s(y))     
        
                        le(0(),y) = 2 + y                    
                                  > 0                        
                                  = true()                   
        
                     le(s(x),0()) = 2                        
                                  > 1                        
                                  = false()                  
        
                    le(s(x),s(y)) = 4 + y                    
                                  > 2 + y                    
                                  = le(x,y)                  
        
                     minus(x,0()) = 1 + x                    
                                  > x                        
                                  = x                        
        
                 minus(s(x),s(y)) = 3 + x                    
                                  > 1 + x                    
                                  = minus(x,y)               
        
                       mod(0(),y) = 1                        
                                  > 0                        
                                  = 0()                      
        
                    mod(s(x),0()) = 15 + 9*x + x^2           
                                  > 0                        
                                  = 0()                      
        
                   mod(s(x),s(y)) = 15 + 9*x + x^2           
                                  > 14 + 9*x + x^2           
                                  = if_mod(le(y,x),s(x),s(y))
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^2))