WORST_CASE(?,O(n^1))
* Step 1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            fold(a,xs) -> Cons(foldl(a,xs),Cons(foldr(a,xs),Nil()))
            foldl(a,Nil()) -> a
            foldl(x,Cons(S(0()),xs)) -> foldl(S(x),xs)
            foldl(S(0()),Cons(x,xs)) -> foldl(S(x),xs)
            foldr(a,Cons(x,xs)) -> op(x,foldr(a,xs))
            foldr(a,Nil()) -> a
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            op(x,S(0())) -> S(x)
            op(S(0()),y) -> S(y)
        - Signature:
            {fold/2,foldl/2,foldr/2,notEmpty/1,op/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {fold,foldl,foldr,notEmpty,op} and constructors {0,Cons
            ,False,Nil,S,True}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = NoRestrict, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(Cons) = {1,2},
          uargs(op) = {2}
        
        Following symbols are considered usable:
          {fold,foldl,foldr,notEmpty,op}
        TcT has computed the following interpretation:
                 p(0) = 5               
              p(Cons) = 1 + x1 + x2     
             p(False) = 9               
               p(Nil) = 4               
                 p(S) = x1              
              p(True) = 3               
              p(fold) = 15 + 8*x1 + 8*x2
             p(foldl) = 3 + x1 + 2*x2   
             p(foldr) = 2 + x1 + 6*x2   
          p(notEmpty) = 8 + x1          
                p(op) = 4*x1 + x2       
        
        Following rules are strictly oriented:
                      fold(a,xs) = 15 + 8*a + 8*xs                          
                                 > 11 + 2*a + 8*xs                          
                                 = Cons(foldl(a,xs),Cons(foldr(a,xs),Nil()))
        
                  foldl(a,Nil()) = 11 + a                                   
                                 > a                                        
                                 = a                                        
        
        foldl(x,Cons(S(0()),xs)) = 15 + x + 2*xs                            
                                 > 3 + x + 2*xs                             
                                 = foldl(S(x),xs)                           
        
        foldl(S(0()),Cons(x,xs)) = 10 + 2*x + 2*xs                          
                                 > 3 + x + 2*xs                             
                                 = foldl(S(x),xs)                           
        
             foldr(a,Cons(x,xs)) = 8 + a + 6*x + 6*xs                       
                                 > 2 + a + 4*x + 6*xs                       
                                 = op(x,foldr(a,xs))                        
        
                  foldr(a,Nil()) = 26 + a                                   
                                 > a                                        
                                 = a                                        
        
            notEmpty(Cons(x,xs)) = 9 + x + xs                               
                                 > 3                                        
                                 = True()                                   
        
                 notEmpty(Nil()) = 12                                       
                                 > 9                                        
                                 = False()                                  
        
                    op(x,S(0())) = 5 + 4*x                                  
                                 > x                                        
                                 = S(x)                                     
        
                    op(S(0()),y) = 20 + y                                   
                                 > y                                        
                                 = S(y)                                     
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))