WORST_CASE(?,O(n^1))
* Step 1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            even(Cons(x,Nil())) -> False()
            even(Cons(x',Cons(x,xs))) -> even(xs)
            even(Nil()) -> True()
            goal(x,y) -> and(lte(x,y),even(x))
            lte(Cons(x,xs),Nil()) -> False()
            lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
            lte(Nil(),y) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Weak TRS:
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
        - Signature:
            {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,even,goal,lte,notEmpty} and constructors {Cons,False
            ,Nil,True}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = NoRestrict, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(and) = {1,2}
        
        Following symbols are considered usable:
          {and,even,goal,lte,notEmpty}
        TcT has computed the following interpretation:
              p(Cons) = 4 + x1 + x2      
             p(False) = 0                
               p(Nil) = 3                
              p(True) = 0                
               p(and) = 4 + x1 + 5*x2    
              p(even) = 1 + x1           
              p(goal) = 10 + 12*x1 + 8*x2
               p(lte) = 4*x1             
          p(notEmpty) = 4*x1             
        
        Following rules are strictly oriented:
                 even(Cons(x,Nil())) = 8 + x                
                                     > 0                    
                                     = False()              
        
           even(Cons(x',Cons(x,xs))) = 9 + x + x' + xs      
                                     > 1 + xs               
                                     = even(xs)             
        
                         even(Nil()) = 4                    
                                     > 0                    
                                     = True()               
        
                           goal(x,y) = 10 + 12*x + 8*y      
                                     > 9 + 9*x              
                                     = and(lte(x,y),even(x))
        
               lte(Cons(x,xs),Nil()) = 16 + 4*x + 4*xs      
                                     > 0                    
                                     = False()              
        
        lte(Cons(x',xs'),Cons(x,xs)) = 16 + 4*x' + 4*xs'    
                                     > 4*xs'                
                                     = lte(xs',xs)          
        
                        lte(Nil(),y) = 12                   
                                     > 0                    
                                     = True()               
        
                notEmpty(Cons(x,xs)) = 16 + 4*x + 4*xs      
                                     > 0                    
                                     = True()               
        
                     notEmpty(Nil()) = 12                   
                                     > 0                    
                                     = False()              
        
        
        Following rules are (at-least) weakly oriented:
        and(False(),False()) =  4      
                             >= 0      
                             =  False()
        
         and(False(),True()) =  4      
                             >= 0      
                             =  False()
        
         and(True(),False()) =  4      
                             >= 0      
                             =  False()
        
          and(True(),True()) =  4      
                             >= 0      
                             =  True() 
        

WORST_CASE(?,O(n^1))