WORST_CASE(?,O(n^1)) * Step 1: NaturalPI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12)) comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12) main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil()) main(Nil()) -> Nil() walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4)) walk#1(Nil()) -> walk_xs() - Signature: {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil ,comp_f_g,walk_xs,walk_xs_3} + Applied Processor: NaturalPI {shape = Linear, restrict = NoRestrict, uargs = UArgs, urules = URules, selector = Nothing} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(comp_f_g) = {1}, uargs(comp_f_g#1) = {1} Following symbols are considered usable: {comp_f_g#1,main,walk#1} TcT has computed the following interpretation: p(Cons) = 4 + x2 p(Nil) = 2 p(comp_f_g) = 8 + x1 + x2 p(comp_f_g#1) = 5 + x1 + x3 p(main) = 4 + 6*x1 p(walk#1) = 1 + 5*x1 p(walk_xs) = 7 p(walk_xs_3) = 8 Following rules are strictly oriented: comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) = 13 + x12 + x7 + x9 > 9 + x12 + x7 = comp_f_g#1(x7,x9,Cons(x8,x12)) comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) = 12 + x12 > 4 + x12 = Cons(x8,x12) main(Cons(x4,x5)) = 28 + 6*x5 > 8 + 5*x5 = comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil()) main(Nil()) = 16 > 2 = Nil() walk#1(Cons(x4,x3)) = 21 + 5*x3 > 17 + 5*x3 = comp_f_g(walk#1(x3),walk_xs_3(x4)) walk#1(Nil()) = 11 > 7 = walk_xs() Following rules are (at-least) weakly oriented: WORST_CASE(?,O(n^1))