WORST_CASE(?,O(n^1))
* Step 1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            group3(@l) -> group3#1(@l)
            group3#1(::(@x,@xs)) -> group3#2(@xs,@x)
            group3#1(nil()) -> nil()
            group3#2(::(@y,@ys),@x) -> group3#3(@ys,@x,@y)
            group3#2(nil(),@x) -> nil()
            group3#3(::(@z,@zs),@x,@y) -> ::(tuple#3(@x,@y,@z),group3(@zs))
            group3#3(nil(),@x,@y) -> nil()
            zip3(@l1,@l2,@l3) -> zip3#1(@l1,@l2,@l3)
            zip3#1(::(@x,@xs),@l2,@l3) -> zip3#2(@l2,@l3,@x,@xs)
            zip3#1(nil(),@l2,@l3) -> nil()
            zip3#2(::(@y,@ys),@l3,@x,@xs) -> zip3#3(@l3,@x,@xs,@y,@ys)
            zip3#2(nil(),@l3,@x,@xs) -> nil()
            zip3#3(::(@z,@zs),@x,@xs,@y,@ys) -> ::(tuple#3(@x,@y,@z),zip3(@xs,@ys,@zs))
            zip3#3(nil(),@x,@xs,@y,@ys) -> nil()
        - Signature:
            {group3/1,group3#1/1,group3#2/2,group3#3/3,zip3/3,zip3#1/3,zip3#2/4,zip3#3/5} / {::/2,nil/0,tuple#3/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {group3,group3#1,group3#2,group3#3,zip3,zip3#1,zip3#2
            ,zip3#3} and constructors {::,nil,tuple#3}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = NoRestrict, uargs = UArgs, urules = URules, selector = Nothing}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(::) = {2}
        
        Following symbols are considered usable:
          {group3,group3#1,group3#2,group3#3,zip3,zip3#1,zip3#2,zip3#3}
        TcT has computed the following interpretation:
                p(::) = 1 + x1 + x2    
            p(group3) = 6 + 5*x1       
          p(group3#1) = 2 + 5*x1       
          p(group3#2) = 3 + 5*x1       
          p(group3#3) = 4 + 5*x1       
               p(nil) = 2              
           p(tuple#3) = 0              
              p(zip3) = 1 + 5*x1 + 4*x3
            p(zip3#1) = 5*x1 + 4*x3    
            p(zip3#2) = 3 + 4*x2 + 5*x4
            p(zip3#3) = 1 + 4*x1 + 5*x3
        
        Following rules are strictly oriented:
                              group3(@l) = 6 + 5*@l                               
                                         > 2 + 5*@l                               
                                         = group3#1(@l)                           
        
                    group3#1(::(@x,@xs)) = 7 + 5*@x + 5*@xs                       
                                         > 3 + 5*@xs                              
                                         = group3#2(@xs,@x)                       
        
                         group3#1(nil()) = 12                                     
                                         > 2                                      
                                         = nil()                                  
        
                 group3#2(::(@y,@ys),@x) = 8 + 5*@y + 5*@ys                       
                                         > 4 + 5*@ys                              
                                         = group3#3(@ys,@x,@y)                    
        
                      group3#2(nil(),@x) = 13                                     
                                         > 2                                      
                                         = nil()                                  
        
              group3#3(::(@z,@zs),@x,@y) = 9 + 5*@z + 5*@zs                       
                                         > 7 + 5*@zs                              
                                         = ::(tuple#3(@x,@y,@z),group3(@zs))      
        
                   group3#3(nil(),@x,@y) = 14                                     
                                         > 2                                      
                                         = nil()                                  
        
                       zip3(@l1,@l2,@l3) = 1 + 5*@l1 + 4*@l3                      
                                         > 5*@l1 + 4*@l3                          
                                         = zip3#1(@l1,@l2,@l3)                    
        
              zip3#1(::(@x,@xs),@l2,@l3) = 5 + 4*@l3 + 5*@x + 5*@xs               
                                         > 3 + 4*@l3 + 5*@xs                      
                                         = zip3#2(@l2,@l3,@x,@xs)                 
        
                   zip3#1(nil(),@l2,@l3) = 10 + 4*@l3                             
                                         > 2                                      
                                         = nil()                                  
        
           zip3#2(::(@y,@ys),@l3,@x,@xs) = 3 + 4*@l3 + 5*@xs                      
                                         > 1 + 4*@l3 + 5*@xs                      
                                         = zip3#3(@l3,@x,@xs,@y,@ys)              
        
                zip3#2(nil(),@l3,@x,@xs) = 3 + 4*@l3 + 5*@xs                      
                                         > 2                                      
                                         = nil()                                  
        
        zip3#3(::(@z,@zs),@x,@xs,@y,@ys) = 5 + 5*@xs + 4*@z + 4*@zs               
                                         > 2 + 5*@xs + 4*@zs                      
                                         = ::(tuple#3(@x,@y,@z),zip3(@xs,@ys,@zs))
        
             zip3#3(nil(),@x,@xs,@y,@ys) = 9 + 5*@xs                              
                                         > 2                                      
                                         = nil()                                  
        
        
        Following rules are (at-least) weakly oriented:
        

WORST_CASE(?,O(n^1))