WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            even(Cons(x,Nil())) -> False()
            even(Cons(x',Cons(x,xs))) -> even(xs)
            even(Nil()) -> True()
            goal(x,y) -> and(lte(x,y),even(x))
            lte(Cons(x,xs),Nil()) -> False()
            lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
            lte(Nil(),y) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Weak TRS:
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
        - Signature:
            {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,even,goal,lte,notEmpty} and constructors {Cons,False
            ,Nil,True}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 3, araTimeout = 60, araFindStrictRules = Nothing, araSmtSolver = MiniSMT}
    + Details:
        Signatures used:
        ----------------
          Cons :: [A(0) x A(1)] -(1)-> A(1)
          Cons :: [A(0) x A(2)] -(2)-> A(2)
          Cons :: [A(0) x A(0)] -(0)-> A(0)
          False :: [] -(0)-> A(0)
          False :: [] -(0)-> A(5)
          False :: [] -(0)-> A(4)
          False :: [] -(0)-> A(1)
          Nil :: [] -(0)-> A(1)
          Nil :: [] -(0)-> A(0)
          Nil :: [] -(0)-> A(2)
          True :: [] -(0)-> A(0)
          True :: [] -(0)-> A(5)
          True :: [] -(0)-> A(1)
          and :: [A(0) x A(0)] -(0)-> A(0)
          even :: [A(1)] -(4)-> A(0)
          goal :: [A(7) x A(1)] -(7)-> A(0)
          lte :: [A(2) x A(0)] -(1)-> A(0)
          notEmpty :: [A(1)] -(4)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          Cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          False :: [] -(0)-> A_cf(0)
          Nil :: [] -(0)-> A_cf(0)
          True :: [] -(0)-> A_cf(0)
          even :: [A_cf(0)] -(0)-> A_cf(0)
          lte :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          Cons_A :: [A(0) x A(1)] -(1)-> A(1)
          False_A :: [] -(0)-> A(1)
          Nil_A :: [] -(0)-> A(1)
          True_A :: [] -(0)-> A(1)
        
* Step 2: Open MAYBE
    - Strict TRS:
        even(Cons(x,Nil())) -> False()
        even(Cons(x',Cons(x,xs))) -> even(xs)
        even(Nil()) -> True()
        goal(x,y) -> and(lte(x,y),even(x))
        lte(Cons(x,xs),Nil()) -> False()
        lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
        lte(Nil(),y) -> True()
        notEmpty(Cons(x,xs)) -> True()
        notEmpty(Nil()) -> False()
    - Weak TRS:
        and(False(),False()) -> False()
        and(False(),True()) -> False()
        and(True(),False()) -> False()
        and(True(),True()) -> True()
    - Signature:
        {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
    - Obligation:
        innermost runtime complexity wrt. defined symbols {and,even,goal,lte,notEmpty} and constructors {Cons,False
        ,Nil,True}
Following problems could not be solved:
  - Strict TRS:
      even(Cons(x,Nil())) -> False()
      even(Cons(x',Cons(x,xs))) -> even(xs)
      even(Nil()) -> True()
      goal(x,y) -> and(lte(x,y),even(x))
      lte(Cons(x,xs),Nil()) -> False()
      lte(Cons(x',xs'),Cons(x,xs)) -> lte(xs',xs)
      lte(Nil(),y) -> True()
      notEmpty(Cons(x,xs)) -> True()
      notEmpty(Nil()) -> False()
  - Weak TRS:
      and(False(),False()) -> False()
      and(False(),True()) -> False()
      and(True(),False()) -> False()
      and(True(),True()) -> True()
  - Signature:
      {and/2,even/1,goal/2,lte/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0}
  - Obligation:
      innermost runtime complexity wrt. defined symbols {and,even,goal,lte,notEmpty} and constructors {Cons,False
      ,Nil,True}
WORST_CASE(?,O(n^1))