WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
            comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
            main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
            main(Nil()) -> Nil()
            walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
            walk#1(Nil()) -> walk_xs()
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
            ,comp_f_g,walk_xs,walk_xs_3}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 3, araTimeout = 60, araFindStrictRules = Nothing, araSmtSolver = MiniSMT}
    + Details:
        Signatures used:
        ----------------
          Cons :: [A(10) x A(10)] -(10)-> A(10)
          Cons :: [A(0) x A(0)] -(0)-> A(0)
          Nil :: [] -(0)-> A(10)
          Nil :: [] -(0)-> A(0)
          Nil :: [] -(0)-> A(1)
          comp_f_g :: [A(8) x A(8)] -(0)-> A(8)
          comp_f_g#1 :: [A(8) x A(4) x A(0)] -(0)-> A(0)
          main :: [A(10)] -(4)-> A(0)
          walk#1 :: [A(10)] -(1)-> A(8)
          walk_xs :: [] -(0)-> A(8)
          walk_xs_3 :: [A(0)] -(4)-> A(4)
          walk_xs_3 :: [A(0)] -(7)-> A(7)
          walk_xs_3 :: [A(0)] -(9)-> A(9)
        
        
        Cost-free Signatures used:
        --------------------------
          Cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          Nil :: [] -(0)-> A_cf(0)
          comp_f_g :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          comp_f_g#1 :: [A_cf(0) x A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          walk#1 :: [A_cf(0)] -(0)-> A_cf(0)
          walk_xs :: [] -(0)-> A_cf(0)
          walk_xs_3 :: [A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          Cons_A :: [A(1) x A(1)] -(1)-> A(1)
          Nil_A :: [] -(0)-> A(1)
          comp_f_g_A :: [A(0) x A(0)] -(0)-> A(1)
          walk_xs_3_A :: [A(0)] -(1)-> A(1)
          walk_xs_A :: [] -(0)-> A(1)
        
* Step 2: Open MAYBE
    - Strict TRS:
        comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
        comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
        main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
        main(Nil()) -> Nil()
        walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
        walk#1(Nil()) -> walk_xs()
    - Signature:
        {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
    - Obligation:
        innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
        ,comp_f_g,walk_xs,walk_xs_3}
Following problems could not be solved:
  - Strict TRS:
      comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
      comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
      main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
      main(Nil()) -> Nil()
      walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
      walk#1(Nil()) -> walk_xs()
  - Signature:
      {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
  - Obligation:
      innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
      ,comp_f_g,walk_xs,walk_xs_3}
WORST_CASE(?,O(n^1))