WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            goal(xs,ys) -> revapp(xs,ys)
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
        - Signature:
            {goal/2,revapp/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {goal,revapp} and constructors {Cons,Nil}
    + Applied Processor:
        Ara {heuristics_ = NoHeuristics, minDegree = 1, maxDegree = 3, araTimeout = 60, araFindStrictRules = Nothing, araSmtSolver = Z3}
    + Details:
        Signatures used:
        ----------------
          Cons :: [A(0) x A(12)] -(12)-> A(12)
          Cons :: [A(0) x A(0)] -(0)-> A(0)
          Nil :: [] -(0)-> A(12)
          goal :: [A(14) x A(14)] -(7)-> A(0)
          revapp :: [A(12) x A(0)] -(4)-> A(0)
        
        
        Cost-free Signatures used:
        --------------------------
          Cons :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
          Nil :: [] -(0)-> A_cf(0)
          revapp :: [A_cf(0) x A_cf(0)] -(0)-> A_cf(0)
        
        
        Base Constructor Signatures used:
        ---------------------------------
          Cons_A :: [A(0) x A(1)] -(1)-> A(1)
          Nil_A :: [] -(0)-> A(1)
        
* Step 2: Open MAYBE
    - Strict TRS:
        goal(xs,ys) -> revapp(xs,ys)
        revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
        revapp(Nil(),rest) -> rest
    - Signature:
        {goal/2,revapp/2} / {Cons/2,Nil/0}
    - Obligation:
        innermost runtime complexity wrt. defined symbols {goal,revapp} and constructors {Cons,Nil}
Following problems could not be solved:
  - Strict TRS:
      goal(xs,ys) -> revapp(xs,ys)
      revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
      revapp(Nil(),rest) -> rest
  - Signature:
      {goal/2,revapp/2} / {Cons/2,Nil/0}
  - Obligation:
      innermost runtime complexity wrt. defined symbols {goal,revapp} and constructors {Cons,Nil}
WORST_CASE(?,O(n^1))