MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: div(x,y) -> ify(ge(y,s(0())),x,y) div(plus(x,y),z) -> plus(div(x,z),div(y,z)) ge(0(),0()) -> true() ge(0(),s(0())) -> false() ge(0(),s(s(x))) -> ge(0(),s(x)) ge(s(x),0()) -> ge(x,0()) ge(s(x),s(y)) -> ge(x,y) if(false(),x,y) -> 0() if(true(),x,y) -> s(div(minus(x,y),y)) ify(false(),x,y) -> divByZeroError() ify(true(),x,y) -> if(ge(x,y),x,y) minus(0(),0()) -> 0() minus(0(),s(x)) -> minus(0(),x) minus(s(x),0()) -> s(minus(x,0())) minus(s(x),s(y)) -> minus(x,y) plus(0(),0()) -> 0() plus(0(),s(x)) -> s(plus(0(),x)) plus(s(x),y) -> s(plus(x,y)) - Signature: {div/2,ge/2,if/3,ify/3,minus/2,plus/2} / {0/0,divByZeroError/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {div,ge,if,ify,minus,plus} and constructors {0 ,divByZeroError,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) ge#(0(),0()) -> c_3() ge#(0(),s(0())) -> c_4() ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))) ge#(s(x),0()) -> c_6(ge#(x,0())) ge#(s(x),s(y)) -> c_7(ge#(x,y)) if#(false(),x,y) -> c_8() if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)) ify#(false(),x,y) -> c_10() ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)) minus#(0(),0()) -> c_12() minus#(0(),s(x)) -> c_13(minus#(0(),x)) minus#(s(x),0()) -> c_14(minus#(x,0())) minus#(s(x),s(y)) -> c_15(minus#(x,y)) plus#(0(),0()) -> c_16() plus#(0(),s(x)) -> c_17(plus#(0(),x)) plus#(s(x),y) -> c_18(plus#(x,y)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) ge#(0(),0()) -> c_3() ge#(0(),s(0())) -> c_4() ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))) ge#(s(x),0()) -> c_6(ge#(x,0())) ge#(s(x),s(y)) -> c_7(ge#(x,y)) if#(false(),x,y) -> c_8() if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)) ify#(false(),x,y) -> c_10() ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)) minus#(0(),0()) -> c_12() minus#(0(),s(x)) -> c_13(minus#(0(),x)) minus#(s(x),0()) -> c_14(minus#(x,0())) minus#(s(x),s(y)) -> c_15(minus#(x,y)) plus#(0(),0()) -> c_16() plus#(0(),s(x)) -> c_17(plus#(0(),x)) plus#(s(x),y) -> c_18(plus#(x,y)) - Weak TRS: div(x,y) -> ify(ge(y,s(0())),x,y) div(plus(x,y),z) -> plus(div(x,z),div(y,z)) ge(0(),0()) -> true() ge(0(),s(0())) -> false() ge(0(),s(s(x))) -> ge(0(),s(x)) ge(s(x),0()) -> ge(x,0()) ge(s(x),s(y)) -> ge(x,y) if(false(),x,y) -> 0() if(true(),x,y) -> s(div(minus(x,y),y)) ify(false(),x,y) -> divByZeroError() ify(true(),x,y) -> if(ge(x,y),x,y) minus(0(),0()) -> 0() minus(0(),s(x)) -> minus(0(),x) minus(s(x),0()) -> s(minus(x,0())) minus(s(x),s(y)) -> minus(x,y) plus(0(),0()) -> 0() plus(0(),s(x)) -> s(plus(0(),x)) plus(s(x),y) -> s(plus(x,y)) - Signature: {div/2,ge/2,if/3,ify/3,minus/2,plus/2,div#/2,ge#/2,if#/3,ify#/3,minus#/2,plus#/2} / {0/0,divByZeroError/0 ,false/0,s/1,true/0,c_1/2,c_2/3,c_3/0,c_4/0,c_5/1,c_6/1,c_7/1,c_8/0,c_9/2,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1 ,c_15/1,c_16/0,c_17/1,c_18/1} - Obligation: innermost runtime complexity wrt. defined symbols {div#,ge#,if#,ify#,minus#,plus#} and constructors {0 ,divByZeroError,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,4,8,10,12,16} by application of Pre({3,4,8,10,12,16}) = {1,2,5,6,7,9,11,13,14,15,17,18}. Here rules are labelled as follows: 1: div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) 2: div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) 3: ge#(0(),0()) -> c_3() 4: ge#(0(),s(0())) -> c_4() 5: ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))) 6: ge#(s(x),0()) -> c_6(ge#(x,0())) 7: ge#(s(x),s(y)) -> c_7(ge#(x,y)) 8: if#(false(),x,y) -> c_8() 9: if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)) 10: ify#(false(),x,y) -> c_10() 11: ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)) 12: minus#(0(),0()) -> c_12() 13: minus#(0(),s(x)) -> c_13(minus#(0(),x)) 14: minus#(s(x),0()) -> c_14(minus#(x,0())) 15: minus#(s(x),s(y)) -> c_15(minus#(x,y)) 16: plus#(0(),0()) -> c_16() 17: plus#(0(),s(x)) -> c_17(plus#(0(),x)) 18: plus#(s(x),y) -> c_18(plus#(x,y)) * Step 3: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))) ge#(s(x),0()) -> c_6(ge#(x,0())) ge#(s(x),s(y)) -> c_7(ge#(x,y)) if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)) ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)) minus#(0(),s(x)) -> c_13(minus#(0(),x)) minus#(s(x),0()) -> c_14(minus#(x,0())) minus#(s(x),s(y)) -> c_15(minus#(x,y)) plus#(0(),s(x)) -> c_17(plus#(0(),x)) plus#(s(x),y) -> c_18(plus#(x,y)) - Weak DPs: ge#(0(),0()) -> c_3() ge#(0(),s(0())) -> c_4() if#(false(),x,y) -> c_8() ify#(false(),x,y) -> c_10() minus#(0(),0()) -> c_12() plus#(0(),0()) -> c_16() - Weak TRS: div(x,y) -> ify(ge(y,s(0())),x,y) div(plus(x,y),z) -> plus(div(x,z),div(y,z)) ge(0(),0()) -> true() ge(0(),s(0())) -> false() ge(0(),s(s(x))) -> ge(0(),s(x)) ge(s(x),0()) -> ge(x,0()) ge(s(x),s(y)) -> ge(x,y) if(false(),x,y) -> 0() if(true(),x,y) -> s(div(minus(x,y),y)) ify(false(),x,y) -> divByZeroError() ify(true(),x,y) -> if(ge(x,y),x,y) minus(0(),0()) -> 0() minus(0(),s(x)) -> minus(0(),x) minus(s(x),0()) -> s(minus(x,0())) minus(s(x),s(y)) -> minus(x,y) plus(0(),0()) -> 0() plus(0(),s(x)) -> s(plus(0(),x)) plus(s(x),y) -> s(plus(x,y)) - Signature: {div/2,ge/2,if/3,ify/3,minus/2,plus/2,div#/2,ge#/2,if#/3,ify#/3,minus#/2,plus#/2} / {0/0,divByZeroError/0 ,false/0,s/1,true/0,c_1/2,c_2/3,c_3/0,c_4/0,c_5/1,c_6/1,c_7/1,c_8/0,c_9/2,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1 ,c_15/1,c_16/0,c_17/1,c_18/1} - Obligation: innermost runtime complexity wrt. defined symbols {div#,ge#,if#,ify#,minus#,plus#} and constructors {0 ,divByZeroError,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) -->_1 ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)):7 -->_2 ge#(s(x),s(y)) -> c_7(ge#(x,y)):5 -->_1 ify#(false(),x,y) -> c_10():16 -->_2 ge#(0(),s(0())) -> c_4():14 2:S:div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) -->_1 plus#(s(x),y) -> c_18(plus#(x,y)):12 -->_1 plus#(0(),s(x)) -> c_17(plus#(0(),x)):11 -->_1 plus#(0(),0()) -> c_16():18 -->_3 div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)):2 -->_2 div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)):2 -->_3 div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))):1 -->_2 div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))):1 3:S:ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))) -->_1 ge#(0(),s(0())) -> c_4():14 -->_1 ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))):3 4:S:ge#(s(x),0()) -> c_6(ge#(x,0())) -->_1 ge#(0(),0()) -> c_3():13 -->_1 ge#(s(x),0()) -> c_6(ge#(x,0())):4 5:S:ge#(s(x),s(y)) -> c_7(ge#(x,y)) -->_1 ge#(0(),s(0())) -> c_4():14 -->_1 ge#(0(),0()) -> c_3():13 -->_1 ge#(s(x),s(y)) -> c_7(ge#(x,y)):5 -->_1 ge#(s(x),0()) -> c_6(ge#(x,0())):4 -->_1 ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))):3 6:S:if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)) -->_2 minus#(s(x),s(y)) -> c_15(minus#(x,y)):10 -->_2 minus#(s(x),0()) -> c_14(minus#(x,0())):9 -->_2 minus#(0(),s(x)) -> c_13(minus#(0(),x)):8 -->_2 minus#(0(),0()) -> c_12():17 -->_1 div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)):2 -->_1 div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))):1 7:S:ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)) -->_1 if#(false(),x,y) -> c_8():15 -->_2 ge#(0(),s(0())) -> c_4():14 -->_2 ge#(0(),0()) -> c_3():13 -->_1 if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)):6 -->_2 ge#(s(x),s(y)) -> c_7(ge#(x,y)):5 -->_2 ge#(s(x),0()) -> c_6(ge#(x,0())):4 -->_2 ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))):3 8:S:minus#(0(),s(x)) -> c_13(minus#(0(),x)) -->_1 minus#(0(),0()) -> c_12():17 -->_1 minus#(0(),s(x)) -> c_13(minus#(0(),x)):8 9:S:minus#(s(x),0()) -> c_14(minus#(x,0())) -->_1 minus#(0(),0()) -> c_12():17 -->_1 minus#(s(x),0()) -> c_14(minus#(x,0())):9 10:S:minus#(s(x),s(y)) -> c_15(minus#(x,y)) -->_1 minus#(0(),0()) -> c_12():17 -->_1 minus#(s(x),s(y)) -> c_15(minus#(x,y)):10 -->_1 minus#(s(x),0()) -> c_14(minus#(x,0())):9 -->_1 minus#(0(),s(x)) -> c_13(minus#(0(),x)):8 11:S:plus#(0(),s(x)) -> c_17(plus#(0(),x)) -->_1 plus#(0(),0()) -> c_16():18 -->_1 plus#(0(),s(x)) -> c_17(plus#(0(),x)):11 12:S:plus#(s(x),y) -> c_18(plus#(x,y)) -->_1 plus#(0(),0()) -> c_16():18 -->_1 plus#(s(x),y) -> c_18(plus#(x,y)):12 -->_1 plus#(0(),s(x)) -> c_17(plus#(0(),x)):11 13:W:ge#(0(),0()) -> c_3() 14:W:ge#(0(),s(0())) -> c_4() 15:W:if#(false(),x,y) -> c_8() 16:W:ify#(false(),x,y) -> c_10() 17:W:minus#(0(),0()) -> c_12() 18:W:plus#(0(),0()) -> c_16() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 16: ify#(false(),x,y) -> c_10() 18: plus#(0(),0()) -> c_16() 17: minus#(0(),0()) -> c_12() 13: ge#(0(),0()) -> c_3() 14: ge#(0(),s(0())) -> c_4() 15: if#(false(),x,y) -> c_8() * Step 4: NaturalMI MAYBE + Considered Problem: - Strict DPs: div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))) ge#(s(x),0()) -> c_6(ge#(x,0())) ge#(s(x),s(y)) -> c_7(ge#(x,y)) if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)) ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)) minus#(0(),s(x)) -> c_13(minus#(0(),x)) minus#(s(x),0()) -> c_14(minus#(x,0())) minus#(s(x),s(y)) -> c_15(minus#(x,y)) plus#(0(),s(x)) -> c_17(plus#(0(),x)) plus#(s(x),y) -> c_18(plus#(x,y)) - Weak TRS: div(x,y) -> ify(ge(y,s(0())),x,y) div(plus(x,y),z) -> plus(div(x,z),div(y,z)) ge(0(),0()) -> true() ge(0(),s(0())) -> false() ge(0(),s(s(x))) -> ge(0(),s(x)) ge(s(x),0()) -> ge(x,0()) ge(s(x),s(y)) -> ge(x,y) if(false(),x,y) -> 0() if(true(),x,y) -> s(div(minus(x,y),y)) ify(false(),x,y) -> divByZeroError() ify(true(),x,y) -> if(ge(x,y),x,y) minus(0(),0()) -> 0() minus(0(),s(x)) -> minus(0(),x) minus(s(x),0()) -> s(minus(x,0())) minus(s(x),s(y)) -> minus(x,y) plus(0(),0()) -> 0() plus(0(),s(x)) -> s(plus(0(),x)) plus(s(x),y) -> s(plus(x,y)) - Signature: {div/2,ge/2,if/3,ify/3,minus/2,plus/2,div#/2,ge#/2,if#/3,ify#/3,minus#/2,plus#/2} / {0/0,divByZeroError/0 ,false/0,s/1,true/0,c_1/2,c_2/3,c_3/0,c_4/0,c_5/1,c_6/1,c_7/1,c_8/0,c_9/2,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1 ,c_15/1,c_16/0,c_17/1,c_18/1} - Obligation: innermost runtime complexity wrt. defined symbols {div#,ge#,if#,ify#,minus#,plus#} and constructors {0 ,divByZeroError,false,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2,3}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_9) = {1,2}, uargs(c_11) = {1,2}, uargs(c_13) = {1}, uargs(c_14) = {1}, uargs(c_15) = {1}, uargs(c_17) = {1}, uargs(c_18) = {1} Following symbols are considered usable: {minus,div#,ge#,if#,ify#,minus#,plus#} TcT has computed the following interpretation: p(0) = [0] p(div) = [3] x1 + [0] p(divByZeroError) = [0] p(false) = [2] p(ge) = [0] p(if) = [1] x2 + [0] p(ify) = [2] x1 + [1] x2 + [0] p(minus) = [0] p(plus) = [2] x1 + [3] x2 + [1] p(s) = [0] p(true) = [0] p(div#) = [4] x1 + [0] p(ge#) = [0] p(if#) = [0] p(ify#) = [0] p(minus#) = [0] p(plus#) = [0] p(c_1) = [1] x1 + [2] x2 + [0] p(c_2) = [1] x1 + [1] x2 + [2] x3 + [0] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [4] x1 + [0] p(c_8) = [1] p(c_9) = [4] x1 + [1] x2 + [0] p(c_10) = [1] p(c_11) = [2] x1 + [4] x2 + [0] p(c_12) = [1] p(c_13) = [4] x1 + [0] p(c_14) = [4] x1 + [0] p(c_15) = [2] x1 + [0] p(c_16) = [1] p(c_17) = [4] x1 + [0] p(c_18) = [4] x1 + [0] Following rules are strictly oriented: div#(plus(x,y),z) = [8] x + [12] y + [4] > [4] x + [8] y + [0] = c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) Following rules are (at-least) weakly oriented: div#(x,y) = [4] x + [0] >= [0] = c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) ge#(0(),s(s(x))) = [0] >= [0] = c_5(ge#(0(),s(x))) ge#(s(x),0()) = [0] >= [0] = c_6(ge#(x,0())) ge#(s(x),s(y)) = [0] >= [0] = c_7(ge#(x,y)) if#(true(),x,y) = [0] >= [0] = c_9(div#(minus(x,y),y),minus#(x,y)) ify#(true(),x,y) = [0] >= [0] = c_11(if#(ge(x,y),x,y),ge#(x,y)) minus#(0(),s(x)) = [0] >= [0] = c_13(minus#(0(),x)) minus#(s(x),0()) = [0] >= [0] = c_14(minus#(x,0())) minus#(s(x),s(y)) = [0] >= [0] = c_15(minus#(x,y)) plus#(0(),s(x)) = [0] >= [0] = c_17(plus#(0(),x)) plus#(s(x),y) = [0] >= [0] = c_18(plus#(x,y)) minus(0(),0()) = [0] >= [0] = 0() minus(0(),s(x)) = [0] >= [0] = minus(0(),x) minus(s(x),0()) = [0] >= [0] = s(minus(x,0())) minus(s(x),s(y)) = [0] >= [0] = minus(x,y) * Step 5: Failure MAYBE + Considered Problem: - Strict DPs: div#(x,y) -> c_1(ify#(ge(y,s(0())),x,y),ge#(y,s(0()))) ge#(0(),s(s(x))) -> c_5(ge#(0(),s(x))) ge#(s(x),0()) -> c_6(ge#(x,0())) ge#(s(x),s(y)) -> c_7(ge#(x,y)) if#(true(),x,y) -> c_9(div#(minus(x,y),y),minus#(x,y)) ify#(true(),x,y) -> c_11(if#(ge(x,y),x,y),ge#(x,y)) minus#(0(),s(x)) -> c_13(minus#(0(),x)) minus#(s(x),0()) -> c_14(minus#(x,0())) minus#(s(x),s(y)) -> c_15(minus#(x,y)) plus#(0(),s(x)) -> c_17(plus#(0(),x)) plus#(s(x),y) -> c_18(plus#(x,y)) - Weak DPs: div#(plus(x,y),z) -> c_2(plus#(div(x,z),div(y,z)),div#(x,z),div#(y,z)) - Weak TRS: div(x,y) -> ify(ge(y,s(0())),x,y) div(plus(x,y),z) -> plus(div(x,z),div(y,z)) ge(0(),0()) -> true() ge(0(),s(0())) -> false() ge(0(),s(s(x))) -> ge(0(),s(x)) ge(s(x),0()) -> ge(x,0()) ge(s(x),s(y)) -> ge(x,y) if(false(),x,y) -> 0() if(true(),x,y) -> s(div(minus(x,y),y)) ify(false(),x,y) -> divByZeroError() ify(true(),x,y) -> if(ge(x,y),x,y) minus(0(),0()) -> 0() minus(0(),s(x)) -> minus(0(),x) minus(s(x),0()) -> s(minus(x,0())) minus(s(x),s(y)) -> minus(x,y) plus(0(),0()) -> 0() plus(0(),s(x)) -> s(plus(0(),x)) plus(s(x),y) -> s(plus(x,y)) - Signature: {div/2,ge/2,if/3,ify/3,minus/2,plus/2,div#/2,ge#/2,if#/3,ify#/3,minus#/2,plus#/2} / {0/0,divByZeroError/0 ,false/0,s/1,true/0,c_1/2,c_2/3,c_3/0,c_4/0,c_5/1,c_6/1,c_7/1,c_8/0,c_9/2,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1 ,c_15/1,c_16/0,c_17/1,c_18/1} - Obligation: innermost runtime complexity wrt. defined symbols {div#,ge#,if#,ify#,minus#,plus#} and constructors {0 ,divByZeroError,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE