MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: d(x) -> if(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x) digits() -> d(0()) if(false(),x) -> nil() if(true(),x) -> cons(x,d(s(x))) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Signature: {d/1,digits/0,if/2,le/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {d,digits,if,le} and constructors {0,cons,false,nil,s ,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) digits#() -> c_2(d#(0())) if#(false(),x) -> c_3() if#(true(),x) -> c_4(d#(s(x))) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) digits#() -> c_2(d#(0())) if#(false(),x) -> c_3() if#(true(),x) -> c_4(d#(s(x))) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) - Weak TRS: d(x) -> if(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x) digits() -> d(0()) if(false(),x) -> nil() if(true(),x) -> cons(x,d(s(x))) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Signature: {d/1,digits/0,if/2,le/2,d#/1,digits#/0,if#/2,le#/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/1,c_3/0 ,c_4/1,c_5/0,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {d#,digits#,if#,le#} and constructors {0,cons,false,nil,s ,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) digits#() -> c_2(d#(0())) if#(false(),x) -> c_3() if#(true(),x) -> c_4(d#(s(x))) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) digits#() -> c_2(d#(0())) if#(false(),x) -> c_3() if#(true(),x) -> c_4(d#(s(x))) le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() le#(s(x),s(y)) -> c_7(le#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Signature: {d/1,digits/0,if/2,le/2,d#/1,digits#/0,if#/2,le#/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/1,c_3/0 ,c_4/1,c_5/0,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {d#,digits#,if#,le#} and constructors {0,cons,false,nil,s ,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,5,6} by application of Pre({3,5,6}) = {1,7}. Here rules are labelled as follows: 1: d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) 2: digits#() -> c_2(d#(0())) 3: if#(false(),x) -> c_3() 4: if#(true(),x) -> c_4(d#(s(x))) 5: le#(0(),y) -> c_5() 6: le#(s(x),0()) -> c_6() 7: le#(s(x),s(y)) -> c_7(le#(x,y)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) digits#() -> c_2(d#(0())) if#(true(),x) -> c_4(d#(s(x))) le#(s(x),s(y)) -> c_7(le#(x,y)) - Weak DPs: if#(false(),x) -> c_3() le#(0(),y) -> c_5() le#(s(x),0()) -> c_6() - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Signature: {d/1,digits/0,if/2,le/2,d#/1,digits#/0,if#/2,le#/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/1,c_3/0 ,c_4/1,c_5/0,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {d#,digits#,if#,le#} and constructors {0,cons,false,nil,s ,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) -->_2 le#(s(x),s(y)) -> c_7(le#(x,y)):4 -->_1 if#(true(),x) -> c_4(d#(s(x))):3 -->_2 le#(0(),y) -> c_5():6 -->_1 if#(false(),x) -> c_3():5 2:S:digits#() -> c_2(d#(0())) -->_1 d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))):1 3:S:if#(true(),x) -> c_4(d#(s(x))) -->_1 d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))):1 4:S:le#(s(x),s(y)) -> c_7(le#(x,y)) -->_1 le#(s(x),0()) -> c_6():7 -->_1 le#(0(),y) -> c_5():6 -->_1 le#(s(x),s(y)) -> c_7(le#(x,y)):4 5:W:if#(false(),x) -> c_3() 6:W:le#(0(),y) -> c_5() 7:W:le#(s(x),0()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: if#(false(),x) -> c_3() 6: le#(0(),y) -> c_5() 7: le#(s(x),0()) -> c_6() * Step 5: RemoveHeads MAYBE + Considered Problem: - Strict DPs: d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) digits#() -> c_2(d#(0())) if#(true(),x) -> c_4(d#(s(x))) le#(s(x),s(y)) -> c_7(le#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Signature: {d/1,digits/0,if/2,le/2,d#/1,digits#/0,if#/2,le#/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/1,c_3/0 ,c_4/1,c_5/0,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {d#,digits#,if#,le#} and constructors {0,cons,false,nil,s ,true} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) -->_2 le#(s(x),s(y)) -> c_7(le#(x,y)):4 -->_1 if#(true(),x) -> c_4(d#(s(x))):3 2:S:digits#() -> c_2(d#(0())) -->_1 d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))):1 3:S:if#(true(),x) -> c_4(d#(s(x))) -->_1 d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))):1 4:S:le#(s(x),s(y)) -> c_7(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_7(le#(x,y)):4 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,digits#() -> c_2(d#(0())))] * Step 6: WeightGap MAYBE + Considered Problem: - Strict DPs: d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) if#(true(),x) -> c_4(d#(s(x))) le#(s(x),s(y)) -> c_7(le#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Signature: {d/1,digits/0,if/2,le/2,d#/1,digits#/0,if#/2,le#/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/1,c_3/0 ,c_4/1,c_5/0,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {d#,digits#,if#,le#} and constructors {0,cons,false,nil,s ,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(if#) = {1}, uargs(c_1) = {1,2}, uargs(c_4) = {1}, uargs(c_7) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(cons) = [0] p(d) = [0] p(digits) = [0] p(false) = [0] p(if) = [0] p(le) = [9] p(nil) = [0] p(s) = [1] p(true) = [4] p(d#) = [0] p(digits#) = [0] p(if#) = [1] x1 + [5] p(le#) = [0] p(c_1) = [1] x1 + [1] x2 + [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [1] x1 + [2] Following rules are strictly oriented: if#(true(),x) = [9] > [0] = c_4(d#(s(x))) Following rules are (at-least) weakly oriented: d#(x) = [0] >= [14] = c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) le#(s(x),s(y)) = [0] >= [2] = c_7(le#(x,y)) le(0(),y) = [9] >= [4] = true() le(s(x),0()) = [9] >= [0] = false() le(s(x),s(y)) = [9] >= [9] = le(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: Failure MAYBE + Considered Problem: - Strict DPs: d#(x) -> c_1(if#(le(x,s(s(s(s(s(s(s(s(s(0())))))))))),x),le#(x,s(s(s(s(s(s(s(s(s(0()))))))))))) le#(s(x),s(y)) -> c_7(le#(x,y)) - Weak DPs: if#(true(),x) -> c_4(d#(s(x))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Signature: {d/1,digits/0,if/2,le/2,d#/1,digits#/0,if#/2,le#/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/2,c_2/1,c_3/0 ,c_4/1,c_5/0,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {d#,digits#,if#,le#} and constructors {0,cons,false,nil,s ,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE