MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) zero(cons(x,xs)) -> zero2(sub(x,x),cons(x,xs)) zero(nil()) -> zero2(0(),nil()) zero2(0(),cons(x,xs)) -> cons(sub(x,x),zero(xs)) zero2(0(),nil()) -> nil() zero2(s(y),cons(x,xs)) -> zero(cons(x,xs)) zero2(s(y),nil()) -> zero(nil()) - Signature: {sub/2,zero/1,zero2/2} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub,zero,zero2} and constructors {0,cons,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs sub#(0(),0()) -> c_1() sub#(0(),s(x)) -> c_2() sub#(s(x),0()) -> c_3() sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero#(nil()) -> c_6(zero2#(0(),nil())) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(0(),nil()) -> c_8() zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) zero2#(s(y),nil()) -> c_10(zero#(nil())) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: sub#(0(),0()) -> c_1() sub#(0(),s(x)) -> c_2() sub#(s(x),0()) -> c_3() sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero#(nil()) -> c_6(zero2#(0(),nil())) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(0(),nil()) -> c_8() zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) zero2#(s(y),nil()) -> c_10(zero#(nil())) - Weak TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) zero(cons(x,xs)) -> zero2(sub(x,x),cons(x,xs)) zero(nil()) -> zero2(0(),nil()) zero2(0(),cons(x,xs)) -> cons(sub(x,x),zero(xs)) zero2(0(),nil()) -> nil() zero2(s(y),cons(x,xs)) -> zero(cons(x,xs)) zero2(s(y),nil()) -> zero(nil()) - Signature: {sub/2,zero/1,zero2/2,sub#/2,zero#/1,zero2#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/2,c_6/1 ,c_7/2,c_8/0,c_9/1,c_10/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub#,zero#,zero2#} and constructors {0,cons,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) sub#(0(),0()) -> c_1() sub#(0(),s(x)) -> c_2() sub#(s(x),0()) -> c_3() sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero#(nil()) -> c_6(zero2#(0(),nil())) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(0(),nil()) -> c_8() zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) zero2#(s(y),nil()) -> c_10(zero#(nil())) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: sub#(0(),0()) -> c_1() sub#(0(),s(x)) -> c_2() sub#(s(x),0()) -> c_3() sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero#(nil()) -> c_6(zero2#(0(),nil())) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(0(),nil()) -> c_8() zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) zero2#(s(y),nil()) -> c_10(zero#(nil())) - Weak TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) - Signature: {sub/2,zero/1,zero2/2,sub#/2,zero#/1,zero2#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/2,c_6/1 ,c_7/2,c_8/0,c_9/1,c_10/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub#,zero#,zero2#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,8} by application of Pre({1,2,3,8}) = {4,5,6,7}. Here rules are labelled as follows: 1: sub#(0(),0()) -> c_1() 2: sub#(0(),s(x)) -> c_2() 3: sub#(s(x),0()) -> c_3() 4: sub#(s(x),s(y)) -> c_4(sub#(x,y)) 5: zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) 6: zero#(nil()) -> c_6(zero2#(0(),nil())) 7: zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) 8: zero2#(0(),nil()) -> c_8() 9: zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) 10: zero2#(s(y),nil()) -> c_10(zero#(nil())) * Step 4: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero#(nil()) -> c_6(zero2#(0(),nil())) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) zero2#(s(y),nil()) -> c_10(zero#(nil())) - Weak DPs: sub#(0(),0()) -> c_1() sub#(0(),s(x)) -> c_2() sub#(s(x),0()) -> c_3() zero2#(0(),nil()) -> c_8() - Weak TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) - Signature: {sub/2,zero/1,zero2/2,sub#/2,zero#/1,zero2#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/2,c_6/1 ,c_7/2,c_8/0,c_9/1,c_10/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub#,zero#,zero2#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3} by application of Pre({3}) = {4,6}. Here rules are labelled as follows: 1: sub#(s(x),s(y)) -> c_4(sub#(x,y)) 2: zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) 3: zero#(nil()) -> c_6(zero2#(0(),nil())) 4: zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) 5: zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) 6: zero2#(s(y),nil()) -> c_10(zero#(nil())) 7: sub#(0(),0()) -> c_1() 8: sub#(0(),s(x)) -> c_2() 9: sub#(s(x),0()) -> c_3() 10: zero2#(0(),nil()) -> c_8() * Step 5: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) zero2#(s(y),nil()) -> c_10(zero#(nil())) - Weak DPs: sub#(0(),0()) -> c_1() sub#(0(),s(x)) -> c_2() sub#(s(x),0()) -> c_3() zero#(nil()) -> c_6(zero2#(0(),nil())) zero2#(0(),nil()) -> c_8() - Weak TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) - Signature: {sub/2,zero/1,zero2/2,sub#/2,zero#/1,zero2#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/2,c_6/1 ,c_7/2,c_8/0,c_9/1,c_10/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub#,zero#,zero2#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {5} by application of Pre({5}) = {}. Here rules are labelled as follows: 1: sub#(s(x),s(y)) -> c_4(sub#(x,y)) 2: zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) 3: zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) 4: zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) 5: zero2#(s(y),nil()) -> c_10(zero#(nil())) 6: sub#(0(),0()) -> c_1() 7: sub#(0(),s(x)) -> c_2() 8: sub#(s(x),0()) -> c_3() 9: zero#(nil()) -> c_6(zero2#(0(),nil())) 10: zero2#(0(),nil()) -> c_8() * Step 6: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) - Weak DPs: sub#(0(),0()) -> c_1() sub#(0(),s(x)) -> c_2() sub#(s(x),0()) -> c_3() zero#(nil()) -> c_6(zero2#(0(),nil())) zero2#(0(),nil()) -> c_8() zero2#(s(y),nil()) -> c_10(zero#(nil())) - Weak TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) - Signature: {sub/2,zero/1,zero2/2,sub#/2,zero#/1,zero2#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/2,c_6/1 ,c_7/2,c_8/0,c_9/1,c_10/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub#,zero#,zero2#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sub#(s(x),s(y)) -> c_4(sub#(x,y)) -->_1 sub#(s(x),0()) -> c_3():7 -->_1 sub#(0(),s(x)) -> c_2():6 -->_1 sub#(0(),0()) -> c_1():5 -->_1 sub#(s(x),s(y)) -> c_4(sub#(x,y)):1 2:S:zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) -->_1 zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))):4 -->_1 zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)):3 -->_2 sub#(0(),0()) -> c_1():5 -->_2 sub#(s(x),s(y)) -> c_4(sub#(x,y)):1 3:S:zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) -->_2 zero#(nil()) -> c_6(zero2#(0(),nil())):8 -->_1 sub#(0(),0()) -> c_1():5 -->_2 zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)):2 -->_1 sub#(s(x),s(y)) -> c_4(sub#(x,y)):1 4:S:zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) -->_1 zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)):2 5:W:sub#(0(),0()) -> c_1() 6:W:sub#(0(),s(x)) -> c_2() 7:W:sub#(s(x),0()) -> c_3() 8:W:zero#(nil()) -> c_6(zero2#(0(),nil())) -->_1 zero2#(0(),nil()) -> c_8():9 9:W:zero2#(0(),nil()) -> c_8() 10:W:zero2#(s(y),nil()) -> c_10(zero#(nil())) -->_1 zero#(nil()) -> c_6(zero2#(0(),nil())):8 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: zero2#(s(y),nil()) -> c_10(zero#(nil())) 8: zero#(nil()) -> c_6(zero2#(0(),nil())) 9: zero2#(0(),nil()) -> c_8() 5: sub#(0(),0()) -> c_1() 6: sub#(0(),s(x)) -> c_2() 7: sub#(s(x),0()) -> c_3() * Step 7: WeightGap MAYBE + Considered Problem: - Strict DPs: sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) - Weak TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) - Signature: {sub/2,zero/1,zero2/2,sub#/2,zero#/1,zero2#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/2,c_6/1 ,c_7/2,c_8/0,c_9/1,c_10/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub#,zero#,zero2#} and constructors {0,cons,nil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(zero2#) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1,2}, uargs(c_7) = {1,2}, uargs(c_9) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [3] p(cons) = [0] p(nil) = [0] p(s) = [3] p(sub) = [3] p(zero) = [0] p(zero2) = [0] p(sub#) = [0] p(zero#) = [0] p(zero2#) = [1] x1 + [0] p(c_1) = [0] p(c_2) = [1] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [1] x2 + [0] p(c_6) = [0] p(c_7) = [1] x1 + [1] x2 + [0] p(c_8) = [0] p(c_9) = [1] x1 + [0] p(c_10) = [0] Following rules are strictly oriented: zero2#(0(),cons(x,xs)) = [3] > [0] = c_7(sub#(x,x),zero#(xs)) zero2#(s(y),cons(x,xs)) = [3] > [0] = c_9(zero#(cons(x,xs))) Following rules are (at-least) weakly oriented: sub#(s(x),s(y)) = [0] >= [0] = c_4(sub#(x,y)) zero#(cons(x,xs)) = [0] >= [3] = c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) sub(0(),0()) = [3] >= [3] = 0() sub(0(),s(x)) = [3] >= [3] = 0() sub(s(x),0()) = [3] >= [3] = s(x) sub(s(x),s(y)) = [3] >= [3] = sub(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: Failure MAYBE + Considered Problem: - Strict DPs: sub#(s(x),s(y)) -> c_4(sub#(x,y)) zero#(cons(x,xs)) -> c_5(zero2#(sub(x,x),cons(x,xs)),sub#(x,x)) - Weak DPs: zero2#(0(),cons(x,xs)) -> c_7(sub#(x,x),zero#(xs)) zero2#(s(y),cons(x,xs)) -> c_9(zero#(cons(x,xs))) - Weak TRS: sub(0(),0()) -> 0() sub(0(),s(x)) -> 0() sub(s(x),0()) -> s(x) sub(s(x),s(y)) -> sub(x,y) - Signature: {sub/2,zero/1,zero2/2,sub#/2,zero#/1,zero2#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/0,c_3/0,c_4/1,c_5/2,c_6/1 ,c_7/2,c_8/0,c_9/1,c_10/1} - Obligation: innermost runtime complexity wrt. defined symbols {sub#,zero#,zero2#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE