MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gcd(NzM,NzM) -> u_02(is_NzNat(NzM),NzM)
            gcd(NzN,NzM) -> u_31(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM)
            gcd(0(),N) -> 0()
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            lt(N,M) -> gt(M,N)
            p(s(N)) -> N
            quot(N,NzM) -> u_11(is_NzNat(NzM),N,NzM)
            quot(N,NzM) -> u_21(is_NzNat(NzM),NzM,N)
            quot(NzM,NzM) -> u_01(is_NzNat(NzM))
            u_01(True()) -> s(0())
            u_02(True(),NzM) -> NzM
            u_1(True(),N,NzM) -> s(quot(d(N,NzM),NzM))
            u_11(True(),N,NzM) -> u_1(gt(N,NzM),N,NzM)
            u_2(True()) -> 0()
            u_21(True(),NzM,N) -> u_2(gt(NzM,N))
            u_3(True(),NzN,NzM) -> gcd(d(NzN,NzM),NzM)
            u_31(True(),True(),NzN,NzM) -> u_3(gt(NzN,NzM),NzN,NzM)
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1} / {0/0,False/0,True/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*,+,d,gcd,gt,is_NzNat,lt,p,quot,u_01,u_02,u_1,u_11,u_2
            ,u_21,u_3,u_31,u_4} and constructors {0,False,True,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          *#(N,0()) -> c_1()
          *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
          +#(N,0()) -> c_3()
          +#(s(N),s(M)) -> c_4(+#(N,M))
          d#(0(),N) -> c_5()
          d#(s(N),s(M)) -> c_6(d#(N,M))
          gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
          gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
          gcd#(0(),N) -> c_9()
          gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
          gt#(0(),M) -> c_11()
          gt#(s(N),s(M)) -> c_12(gt#(N,M))
          is_NzNat#(0()) -> c_13()
          is_NzNat#(s(N)) -> c_14()
          lt#(N,M) -> c_15(gt#(M,N))
          p#(s(N)) -> c_16()
          quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
          quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
          quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
          u_01#(True()) -> c_20()
          u_02#(True(),NzM) -> c_21()
          u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
          u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
          u_2#(True()) -> c_24()
          u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
          u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
          u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
          u_4#(True()) -> c_28()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(N,0()) -> c_1()
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(N,0()) -> c_3()
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(0(),N) -> c_5()
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
            gcd#(0(),N) -> c_9()
            gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
            gt#(0(),M) -> c_11()
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            is_NzNat#(0()) -> c_13()
            is_NzNat#(s(N)) -> c_14()
            lt#(N,M) -> c_15(gt#(M,N))
            p#(s(N)) -> c_16()
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
            quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
            u_01#(True()) -> c_20()
            u_02#(True(),NzM) -> c_21()
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_2#(True()) -> c_24()
            u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
            u_4#(True()) -> c_28()
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gcd(NzM,NzM) -> u_02(is_NzNat(NzM),NzM)
            gcd(NzN,NzM) -> u_31(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM)
            gcd(0(),N) -> 0()
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            lt(N,M) -> gt(M,N)
            p(s(N)) -> N
            quot(N,NzM) -> u_11(is_NzNat(NzM),N,NzM)
            quot(N,NzM) -> u_21(is_NzNat(NzM),NzM,N)
            quot(NzM,NzM) -> u_01(is_NzNat(NzM))
            u_01(True()) -> s(0())
            u_02(True(),NzM) -> NzM
            u_1(True(),N,NzM) -> s(quot(d(N,NzM),NzM))
            u_11(True(),N,NzM) -> u_1(gt(N,NzM),N,NzM)
            u_2(True()) -> 0()
            u_21(True(),NzM,N) -> u_2(gt(NzM,N))
            u_3(True(),NzN,NzM) -> gcd(d(NzN,NzM),NzM)
            u_31(True(),True(),NzN,NzM) -> u_3(gt(NzN,NzM),NzN,NzM)
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/3
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/2,c_18/2,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/2,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          *(N,0()) -> 0()
          *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
          +(N,0()) -> N
          +(s(N),s(M)) -> s(s(+(N,M)))
          d(0(),N) -> N
          d(s(N),s(M)) -> d(N,M)
          gt(NzN,0()) -> u_4(is_NzNat(NzN))
          gt(0(),M) -> False()
          gt(s(N),s(M)) -> gt(N,M)
          is_NzNat(0()) -> False()
          is_NzNat(s(N)) -> True()
          u_4(True()) -> True()
          *#(N,0()) -> c_1()
          *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
          +#(N,0()) -> c_3()
          +#(s(N),s(M)) -> c_4(+#(N,M))
          d#(0(),N) -> c_5()
          d#(s(N),s(M)) -> c_6(d#(N,M))
          gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
          gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
          gcd#(0(),N) -> c_9()
          gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
          gt#(0(),M) -> c_11()
          gt#(s(N),s(M)) -> c_12(gt#(N,M))
          is_NzNat#(0()) -> c_13()
          is_NzNat#(s(N)) -> c_14()
          lt#(N,M) -> c_15(gt#(M,N))
          p#(s(N)) -> c_16()
          quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
          quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
          quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
          u_01#(True()) -> c_20()
          u_02#(True(),NzM) -> c_21()
          u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
          u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
          u_2#(True()) -> c_24()
          u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
          u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
          u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
          u_4#(True()) -> c_28()
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(N,0()) -> c_1()
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(N,0()) -> c_3()
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(0(),N) -> c_5()
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
            gcd#(0(),N) -> c_9()
            gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
            gt#(0(),M) -> c_11()
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            is_NzNat#(0()) -> c_13()
            is_NzNat#(s(N)) -> c_14()
            lt#(N,M) -> c_15(gt#(M,N))
            p#(s(N)) -> c_16()
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
            quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
            u_01#(True()) -> c_20()
            u_02#(True(),NzM) -> c_21()
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_2#(True()) -> c_24()
            u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
            u_4#(True()) -> c_28()
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/3
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/2,c_18/2,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/2,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,5,9,11,13,14,16,20,21,24,28}
        by application of
          Pre({1,3,5,9,11,13,14,16,20,21,24,28}) = {2,4,6,7,8,10,12,15,17,18,19,22,23,25,26,27}.
        Here rules are labelled as follows:
          1: *#(N,0()) -> c_1()
          2: *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
          3: +#(N,0()) -> c_3()
          4: +#(s(N),s(M)) -> c_4(+#(N,M))
          5: d#(0(),N) -> c_5()
          6: d#(s(N),s(M)) -> c_6(d#(N,M))
          7: gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
          8: gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
          9: gcd#(0(),N) -> c_9()
          10: gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
          11: gt#(0(),M) -> c_11()
          12: gt#(s(N),s(M)) -> c_12(gt#(N,M))
          13: is_NzNat#(0()) -> c_13()
          14: is_NzNat#(s(N)) -> c_14()
          15: lt#(N,M) -> c_15(gt#(M,N))
          16: p#(s(N)) -> c_16()
          17: quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
          18: quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
          19: quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
          20: u_01#(True()) -> c_20()
          21: u_02#(True(),NzM) -> c_21()
          22: u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
          23: u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
          24: u_2#(True()) -> c_24()
          25: u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
          26: u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
          27: u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
          28: u_4#(True()) -> c_28()
* Step 4: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
            gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            lt#(N,M) -> c_15(gt#(M,N))
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
            quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
        - Weak DPs:
            *#(N,0()) -> c_1()
            +#(N,0()) -> c_3()
            d#(0(),N) -> c_5()
            gcd#(0(),N) -> c_9()
            gt#(0(),M) -> c_11()
            is_NzNat#(0()) -> c_13()
            is_NzNat#(s(N)) -> c_14()
            p#(s(N)) -> c_16()
            u_01#(True()) -> c_20()
            u_02#(True(),NzM) -> c_21()
            u_2#(True()) -> c_24()
            u_4#(True()) -> c_28()
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/3
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/2,c_18/2,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/2,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {4,6,11}
        by application of
          Pre({4,6,11}) = {7,8,12,13,14,15,16}.
        Here rules are labelled as follows:
          1: *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
          2: +#(s(N),s(M)) -> c_4(+#(N,M))
          3: d#(s(N),s(M)) -> c_6(d#(N,M))
          4: gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
          5: gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
          6: gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
          7: gt#(s(N),s(M)) -> c_12(gt#(N,M))
          8: lt#(N,M) -> c_15(gt#(M,N))
          9: quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
          10: quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
          11: quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
          12: u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
          13: u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
          14: u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
          15: u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
          16: u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
          17: *#(N,0()) -> c_1()
          18: +#(N,0()) -> c_3()
          19: d#(0(),N) -> c_5()
          20: gcd#(0(),N) -> c_9()
          21: gt#(0(),M) -> c_11()
          22: is_NzNat#(0()) -> c_13()
          23: is_NzNat#(s(N)) -> c_14()
          24: p#(s(N)) -> c_16()
          25: u_01#(True()) -> c_20()
          26: u_02#(True(),NzM) -> c_21()
          27: u_2#(True()) -> c_24()
          28: u_4#(True()) -> c_28()
* Step 5: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            lt#(N,M) -> c_15(gt#(M,N))
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
        - Weak DPs:
            *#(N,0()) -> c_1()
            +#(N,0()) -> c_3()
            d#(0(),N) -> c_5()
            gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
            gcd#(0(),N) -> c_9()
            gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
            gt#(0(),M) -> c_11()
            is_NzNat#(0()) -> c_13()
            is_NzNat#(s(N)) -> c_14()
            p#(s(N)) -> c_16()
            quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
            u_01#(True()) -> c_20()
            u_02#(True(),NzM) -> c_21()
            u_2#(True()) -> c_24()
            u_4#(True()) -> c_28()
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/3
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/2,c_18/2,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/2,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:*#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
             -->_2 +#(s(N),s(M)) -> c_4(+#(N,M)):2
             -->_1 +#(s(N),s(M)) -> c_4(+#(N,M)):2
             -->_2 +#(N,0()) -> c_3():15
             -->_1 +#(N,0()) -> c_3():15
             -->_3 *#(N,0()) -> c_1():14
             -->_3 *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M)):1
          
          2:S:+#(s(N),s(M)) -> c_4(+#(N,M))
             -->_1 +#(N,0()) -> c_3():15
             -->_1 +#(s(N),s(M)) -> c_4(+#(N,M)):2
          
          3:S:d#(s(N),s(M)) -> c_6(d#(N,M))
             -->_1 d#(0(),N) -> c_5():16
             -->_1 d#(s(N),s(M)) -> c_6(d#(N,M)):3
          
          4:S:gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
             -->_1 u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM)):13
             -->_3 is_NzNat#(s(N)) -> c_14():22
             -->_2 is_NzNat#(s(N)) -> c_14():22
             -->_3 is_NzNat#(0()) -> c_13():21
             -->_2 is_NzNat#(0()) -> c_13():21
          
          5:S:gt#(s(N),s(M)) -> c_12(gt#(N,M))
             -->_1 gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN)):19
             -->_1 gt#(0(),M) -> c_11():20
             -->_1 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          6:S:lt#(N,M) -> c_15(gt#(M,N))
             -->_1 gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN)):19
             -->_1 gt#(0(),M) -> c_11():20
             -->_1 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          7:S:quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
             -->_1 u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM)):10
             -->_2 is_NzNat#(s(N)) -> c_14():22
             -->_2 is_NzNat#(0()) -> c_13():21
          
          8:S:quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
             -->_1 u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N)):11
             -->_2 is_NzNat#(s(N)) -> c_14():22
             -->_2 is_NzNat#(0()) -> c_13():21
          
          9:S:u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
             -->_1 quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM)):24
             -->_2 d#(0(),N) -> c_5():16
             -->_1 quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM)):8
             -->_1 quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM)):7
             -->_2 d#(s(N),s(M)) -> c_6(d#(N,M)):3
          
          10:S:u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
             -->_2 gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN)):19
             -->_2 gt#(0(),M) -> c_11():20
             -->_1 u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM)):9
             -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          11:S:u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
             -->_2 gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN)):19
             -->_1 u_2#(True()) -> c_24():27
             -->_2 gt#(0(),M) -> c_11():20
             -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          12:S:u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
             -->_1 gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM)):17
             -->_1 gcd#(0(),N) -> c_9():18
             -->_2 d#(0(),N) -> c_5():16
             -->_1 gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM)):4
             -->_2 d#(s(N),s(M)) -> c_6(d#(N,M)):3
          
          13:S:u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
             -->_2 gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN)):19
             -->_2 gt#(0(),M) -> c_11():20
             -->_1 u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM)):12
             -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          14:W:*#(N,0()) -> c_1()
             
          
          15:W:+#(N,0()) -> c_3()
             
          
          16:W:d#(0(),N) -> c_5()
             
          
          17:W:gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
             -->_1 u_02#(True(),NzM) -> c_21():26
             -->_2 is_NzNat#(s(N)) -> c_14():22
             -->_2 is_NzNat#(0()) -> c_13():21
          
          18:W:gcd#(0(),N) -> c_9()
             
          
          19:W:gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
             -->_1 u_4#(True()) -> c_28():28
             -->_2 is_NzNat#(s(N)) -> c_14():22
             -->_2 is_NzNat#(0()) -> c_13():21
          
          20:W:gt#(0(),M) -> c_11()
             
          
          21:W:is_NzNat#(0()) -> c_13()
             
          
          22:W:is_NzNat#(s(N)) -> c_14()
             
          
          23:W:p#(s(N)) -> c_16()
             
          
          24:W:quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
             -->_1 u_01#(True()) -> c_20():25
             -->_2 is_NzNat#(s(N)) -> c_14():22
             -->_2 is_NzNat#(0()) -> c_13():21
          
          25:W:u_01#(True()) -> c_20()
             
          
          26:W:u_02#(True(),NzM) -> c_21()
             
          
          27:W:u_2#(True()) -> c_24()
             
          
          28:W:u_4#(True()) -> c_28()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          23: p#(s(N)) -> c_16()
          27: u_2#(True()) -> c_24()
          24: quot#(NzM,NzM) -> c_19(u_01#(is_NzNat(NzM)),is_NzNat#(NzM))
          25: u_01#(True()) -> c_20()
          18: gcd#(0(),N) -> c_9()
          17: gcd#(NzM,NzM) -> c_7(u_02#(is_NzNat(NzM),NzM),is_NzNat#(NzM))
          26: u_02#(True(),NzM) -> c_21()
          20: gt#(0(),M) -> c_11()
          19: gt#(NzN,0()) -> c_10(u_4#(is_NzNat(NzN)),is_NzNat#(NzN))
          21: is_NzNat#(0()) -> c_13()
          22: is_NzNat#(s(N)) -> c_14()
          28: u_4#(True()) -> c_28()
          16: d#(0(),N) -> c_5()
          14: *#(N,0()) -> c_1()
          15: +#(N,0()) -> c_3()
* Step 6: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            lt#(N,M) -> c_15(gt#(M,N))
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/3
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/2,c_18/2,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/2,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:*#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
             -->_2 +#(s(N),s(M)) -> c_4(+#(N,M)):2
             -->_1 +#(s(N),s(M)) -> c_4(+#(N,M)):2
             -->_3 *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M)):1
          
          2:S:+#(s(N),s(M)) -> c_4(+#(N,M))
             -->_1 +#(s(N),s(M)) -> c_4(+#(N,M)):2
          
          3:S:d#(s(N),s(M)) -> c_6(d#(N,M))
             -->_1 d#(s(N),s(M)) -> c_6(d#(N,M)):3
          
          4:S:gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM))
             -->_1 u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM)):13
          
          5:S:gt#(s(N),s(M)) -> c_12(gt#(N,M))
             -->_1 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          6:S:lt#(N,M) -> c_15(gt#(M,N))
             -->_1 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          7:S:quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM))
             -->_1 u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM)):10
          
          8:S:quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM))
             -->_1 u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N)):11
          
          9:S:u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
             -->_1 quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N),is_NzNat#(NzM)):8
             -->_1 quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM),is_NzNat#(NzM)):7
             -->_2 d#(s(N),s(M)) -> c_6(d#(N,M)):3
          
          10:S:u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
             -->_1 u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM)):9
             -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          11:S:u_21#(True(),NzM,N) -> c_25(u_2#(gt(NzM,N)),gt#(NzM,N))
             -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
          12:S:u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
             -->_1 gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM),is_NzNat#(NzN),is_NzNat#(NzM)):4
             -->_2 d#(s(N),s(M)) -> c_6(d#(N,M)):3
          
          13:S:u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
             -->_1 u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM)):12
             -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
          quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM))
          quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N))
          u_21#(True(),NzM,N) -> c_25(gt#(NzM,N))
* Step 7: RemoveHeads MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            lt#(N,M) -> c_15(gt#(M,N))
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N))
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_21#(True(),NzM,N) -> c_25(gt#(NzM,N))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/1
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/1,c_18/1,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/1,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:*#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
           -->_2 +#(s(N),s(M)) -> c_4(+#(N,M)):2
           -->_1 +#(s(N),s(M)) -> c_4(+#(N,M)):2
           -->_3 *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M)):1
        
        2:S:+#(s(N),s(M)) -> c_4(+#(N,M))
           -->_1 +#(s(N),s(M)) -> c_4(+#(N,M)):2
        
        3:S:d#(s(N),s(M)) -> c_6(d#(N,M))
           -->_1 d#(s(N),s(M)) -> c_6(d#(N,M)):3
        
        4:S:gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
           -->_1 u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM)):13
        
        5:S:gt#(s(N),s(M)) -> c_12(gt#(N,M))
           -->_1 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
        
        6:S:lt#(N,M) -> c_15(gt#(M,N))
           -->_1 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
        
        7:S:quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM))
           -->_1 u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM)):10
        
        8:S:quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N))
           -->_1 u_21#(True(),NzM,N) -> c_25(gt#(NzM,N)):11
        
        9:S:u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
           -->_1 quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N)):8
           -->_1 quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM)):7
           -->_2 d#(s(N),s(M)) -> c_6(d#(N,M)):3
        
        10:S:u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
           -->_1 u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM)):9
           -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
        
        11:S:u_21#(True(),NzM,N) -> c_25(gt#(NzM,N))
           -->_1 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
        
        12:S:u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
           -->_1 gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM)):4
           -->_2 d#(s(N),s(M)) -> c_6(d#(N,M)):3
        
        13:S:u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
           -->_1 u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM)):12
           -->_2 gt#(s(N),s(M)) -> c_12(gt#(N,M)):5
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(6,lt#(N,M) -> c_15(gt#(M,N)))]
* Step 8: NaturalMI MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N))
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_21#(True(),NzM,N) -> c_25(gt#(NzM,N))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/1
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/1,c_18/1,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/1,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2,3},
          uargs(c_4) = {1},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_12) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1},
          uargs(c_22) = {1,2},
          uargs(c_23) = {1,2},
          uargs(c_25) = {1},
          uargs(c_26) = {1,2},
          uargs(c_27) = {1,2}
        
        Following symbols are considered usable:
          {is_NzNat,*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#}
        TcT has computed the following interpretation:
                  p(*) = [4] x2 + [6]                  
                  p(+) = [2] x1 + [1] x2 + [0]         
                  p(0) = [1]                           
              p(False) = [0]                           
               p(True) = [1]                           
                  p(d) = [0]                           
                p(gcd) = [1] x1 + [0]                  
                 p(gt) = [0]                           
           p(is_NzNat) = [1]                           
                 p(lt) = [4] x2 + [0]                  
                  p(p) = [0]                           
               p(quot) = [1]                           
                  p(s) = [0]                           
               p(u_01) = [4] x1 + [4]                  
               p(u_02) = [4] x1 + [1] x2 + [0]         
                p(u_1) = [1] x2 + [1] x3 + [2]         
               p(u_11) = [4] x3 + [2]                  
                p(u_2) = [2] x1 + [1]                  
               p(u_21) = [2] x2 + [0]                  
                p(u_3) = [1] x1 + [1] x2 + [1] x3 + [2]
               p(u_31) = [2] x1 + [1] x4 + [0]         
                p(u_4) = [6] x1 + [6]                  
                 p(*#) = [0]                           
                 p(+#) = [0]                           
                 p(d#) = [0]                           
               p(gcd#) = [0]                           
                p(gt#) = [0]                           
          p(is_NzNat#) = [0]                           
                p(lt#) = [1] x1 + [2]                  
                 p(p#) = [0]                           
              p(quot#) = [4] x2 + [4]                  
              p(u_01#) = [1]                           
              p(u_02#) = [4] x1 + [4]                  
               p(u_1#) = [4] x3 + [4]                  
              p(u_11#) = [3] x1 + [4] x3 + [1]         
               p(u_2#) = [0]                           
              p(u_21#) = [4] x1 + [0]                  
               p(u_3#) = [0]                           
              p(u_31#) = [0]                           
               p(u_4#) = [4]                           
                p(c_1) = [1]                           
                p(c_2) = [2] x1 + [4] x2 + [4] x3 + [0]
                p(c_3) = [4]                           
                p(c_4) = [4] x1 + [0]                  
                p(c_5) = [0]                           
                p(c_6) = [4] x1 + [0]                  
                p(c_7) = [1] x1 + [1]                  
                p(c_8) = [2] x1 + [0]                  
                p(c_9) = [2]                           
               p(c_10) = [4] x2 + [1]                  
               p(c_11) = [1]                           
               p(c_12) = [4] x1 + [0]                  
               p(c_13) = [0]                           
               p(c_14) = [1]                           
               p(c_15) = [0]                           
               p(c_16) = [4]                           
               p(c_17) = [1] x1 + [0]                  
               p(c_18) = [1] x1 + [0]                  
               p(c_19) = [2]                           
               p(c_20) = [1]                           
               p(c_21) = [0]                           
               p(c_22) = [1] x1 + [2] x2 + [0]         
               p(c_23) = [1] x1 + [2] x2 + [0]         
               p(c_24) = [4]                           
               p(c_25) = [2] x1 + [0]                  
               p(c_26) = [2] x1 + [2] x2 + [0]         
               p(c_27) = [4] x1 + [4] x2 + [0]         
               p(c_28) = [0]                           
        
        Following rules are strictly oriented:
        u_21#(True(),NzM,N) = [4]             
                            > [0]             
                            = c_25(gt#(NzM,N))
        
        
        Following rules are (at-least) weakly oriented:
                       *#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))    
        
                       +#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_4(+#(N,M))                                   
        
                       d#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_6(d#(N,M))                                   
        
                       gcd#(NzN,NzM) =  [0]                                            
                                     >= [0]                                            
                                     =  c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
        
                      gt#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_12(gt#(N,M))                                 
        
                        quot#(N,NzM) =  [4] NzM + [4]                                  
                                     >= [4] NzM + [4]                                  
                                     =  c_17(u_11#(is_NzNat(NzM),N,NzM))               
        
                        quot#(N,NzM) =  [4] NzM + [4]                                  
                                     >= [4]                                            
                                     =  c_18(u_21#(is_NzNat(NzM),NzM,N))               
        
                  u_1#(True(),N,NzM) =  [4] NzM + [4]                                  
                                     >= [4] NzM + [4]                                  
                                     =  c_22(quot#(d(N,NzM),NzM),d#(N,NzM))            
        
                 u_11#(True(),N,NzM) =  [4] NzM + [4]                                  
                                     >= [4] NzM + [4]                                  
                                     =  c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))         
        
                u_3#(True(),NzN,NzM) =  [0]                                            
                                     >= [0]                                            
                                     =  c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))         
        
        u_31#(True(),True(),NzN,NzM) =  [0]                                            
                                     >= [0]                                            
                                     =  c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))   
        
                       is_NzNat(0()) =  [1]                                            
                                     >= [0]                                            
                                     =  False()                                        
        
                      is_NzNat(s(N)) =  [1]                                            
                                     >= [1]                                            
                                     =  True()                                         
        
* Step 9: NaturalMI MAYBE
    + Considered Problem:
        - Strict DPs:
            *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
            +#(s(N),s(M)) -> c_4(+#(N,M))
            d#(s(N),s(M)) -> c_6(d#(N,M))
            gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
            gt#(s(N),s(M)) -> c_12(gt#(N,M))
            quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM))
            quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N))
            u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
            u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
            u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
            u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
        - Weak DPs:
            u_21#(True(),NzM,N) -> c_25(gt#(NzM,N))
        - Weak TRS:
            *(N,0()) -> 0()
            *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
            +(N,0()) -> N
            +(s(N),s(M)) -> s(s(+(N,M)))
            d(0(),N) -> N
            d(s(N),s(M)) -> d(N,M)
            gt(NzN,0()) -> u_4(is_NzNat(NzN))
            gt(0(),M) -> False()
            gt(s(N),s(M)) -> gt(N,M)
            is_NzNat(0()) -> False()
            is_NzNat(s(N)) -> True()
            u_4(True()) -> True()
        - Signature:
            {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
            ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
            ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/1
            ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/1,c_18/1,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
            ,c_24/0,c_25/1,c_26/2,c_27/2,c_28/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
            ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2,3},
          uargs(c_4) = {1},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_12) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1},
          uargs(c_22) = {1,2},
          uargs(c_23) = {1,2},
          uargs(c_25) = {1},
          uargs(c_26) = {1,2},
          uargs(c_27) = {1,2}
        
        Following symbols are considered usable:
          {gt,u_4,*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#}
        TcT has computed the following interpretation:
                  p(*) = [1] x1 + [1] x2 + [0]         
                  p(+) = [0]                           
                  p(0) = [0]                           
              p(False) = [0]                           
               p(True) = [1]                           
                  p(d) = [4] x1 + [0]                  
                p(gcd) = [4] x1 + [1]                  
                 p(gt) = [1]                           
           p(is_NzNat) = [0]                           
                 p(lt) = [2] x1 + [1]                  
                  p(p) = [1]                           
               p(quot) = [4] x1 + [1]                  
                  p(s) = [0]                           
               p(u_01) = [0]                           
               p(u_02) = [2]                           
                p(u_1) = [1] x1 + [1]                  
               p(u_11) = [1] x1 + [1]                  
                p(u_2) = [1] x1 + [1]                  
               p(u_21) = [1]                           
                p(u_3) = [4] x2 + [2] x3 + [0]         
               p(u_31) = [2] x1 + [1] x3 + [2]         
                p(u_4) = [1]                           
                 p(*#) = [0]                           
                 p(+#) = [0]                           
                 p(d#) = [0]                           
               p(gcd#) = [0]                           
                p(gt#) = [0]                           
          p(is_NzNat#) = [1]                           
                p(lt#) = [1] x1 + [1] x2 + [2]         
                 p(p#) = [4]                           
              p(quot#) = [4]                           
              p(u_01#) = [1]                           
              p(u_02#) = [0]                           
               p(u_1#) = [4] x1 + [0]                  
              p(u_11#) = [4]                           
               p(u_2#) = [1]                           
              p(u_21#) = [0]                           
               p(u_3#) = [0]                           
              p(u_31#) = [0]                           
               p(u_4#) = [1]                           
                p(c_1) = [0]                           
                p(c_2) = [2] x1 + [1] x2 + [1] x3 + [0]
                p(c_3) = [1]                           
                p(c_4) = [4] x1 + [0]                  
                p(c_5) = [4]                           
                p(c_6) = [4] x1 + [0]                  
                p(c_7) = [0]                           
                p(c_8) = [2] x1 + [0]                  
                p(c_9) = [4]                           
               p(c_10) = [4] x1 + [0]                  
               p(c_11) = [1]                           
               p(c_12) = [4] x1 + [0]                  
               p(c_13) = [0]                           
               p(c_14) = [0]                           
               p(c_15) = [4] x1 + [4]                  
               p(c_16) = [0]                           
               p(c_17) = [1] x1 + [0]                  
               p(c_18) = [4] x1 + [2]                  
               p(c_19) = [1] x1 + [1] x2 + [0]         
               p(c_20) = [1]                           
               p(c_21) = [0]                           
               p(c_22) = [1] x1 + [4] x2 + [0]         
               p(c_23) = [1] x1 + [4] x2 + [0]         
               p(c_24) = [1]                           
               p(c_25) = [4] x1 + [0]                  
               p(c_26) = [2] x1 + [1] x2 + [0]         
               p(c_27) = [2] x1 + [4] x2 + [0]         
               p(c_28) = [0]                           
        
        Following rules are strictly oriented:
        quot#(N,NzM) = [4]                             
                     > [2]                             
                     = c_18(u_21#(is_NzNat(NzM),NzM,N))
        
        
        Following rules are (at-least) weakly oriented:
                       *#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))    
        
                       +#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_4(+#(N,M))                                   
        
                       d#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_6(d#(N,M))                                   
        
                       gcd#(NzN,NzM) =  [0]                                            
                                     >= [0]                                            
                                     =  c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
        
                      gt#(s(N),s(M)) =  [0]                                            
                                     >= [0]                                            
                                     =  c_12(gt#(N,M))                                 
        
                        quot#(N,NzM) =  [4]                                            
                                     >= [4]                                            
                                     =  c_17(u_11#(is_NzNat(NzM),N,NzM))               
        
                  u_1#(True(),N,NzM) =  [4]                                            
                                     >= [4]                                            
                                     =  c_22(quot#(d(N,NzM),NzM),d#(N,NzM))            
        
                 u_11#(True(),N,NzM) =  [4]                                            
                                     >= [4]                                            
                                     =  c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))         
        
                 u_21#(True(),NzM,N) =  [0]                                            
                                     >= [0]                                            
                                     =  c_25(gt#(NzM,N))                               
        
                u_3#(True(),NzN,NzM) =  [0]                                            
                                     >= [0]                                            
                                     =  c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))         
        
        u_31#(True(),True(),NzN,NzM) =  [0]                                            
                                     >= [0]                                            
                                     =  c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))   
        
                         gt(NzN,0()) =  [1]                                            
                                     >= [1]                                            
                                     =  u_4(is_NzNat(NzN))                             
        
                           gt(0(),M) =  [1]                                            
                                     >= [0]                                            
                                     =  False()                                        
        
                       gt(s(N),s(M)) =  [1]                                            
                                     >= [1]                                            
                                     =  gt(N,M)                                        
        
                         u_4(True()) =  [1]                                            
                                     >= [1]                                            
                                     =  True()                                         
        
* Step 10: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          *#(s(N),s(M)) -> c_2(+#(N,+(M,*(N,M))),+#(M,*(N,M)),*#(N,M))
          +#(s(N),s(M)) -> c_4(+#(N,M))
          d#(s(N),s(M)) -> c_6(d#(N,M))
          gcd#(NzN,NzM) -> c_8(u_31#(is_NzNat(NzN),is_NzNat(NzM),NzN,NzM))
          gt#(s(N),s(M)) -> c_12(gt#(N,M))
          quot#(N,NzM) -> c_17(u_11#(is_NzNat(NzM),N,NzM))
          u_1#(True(),N,NzM) -> c_22(quot#(d(N,NzM),NzM),d#(N,NzM))
          u_11#(True(),N,NzM) -> c_23(u_1#(gt(N,NzM),N,NzM),gt#(N,NzM))
          u_3#(True(),NzN,NzM) -> c_26(gcd#(d(NzN,NzM),NzM),d#(NzN,NzM))
          u_31#(True(),True(),NzN,NzM) -> c_27(u_3#(gt(NzN,NzM),NzN,NzM),gt#(NzN,NzM))
      - Weak DPs:
          quot#(N,NzM) -> c_18(u_21#(is_NzNat(NzM),NzM,N))
          u_21#(True(),NzM,N) -> c_25(gt#(NzM,N))
      - Weak TRS:
          *(N,0()) -> 0()
          *(s(N),s(M)) -> s(+(N,+(M,*(N,M))))
          +(N,0()) -> N
          +(s(N),s(M)) -> s(s(+(N,M)))
          d(0(),N) -> N
          d(s(N),s(M)) -> d(N,M)
          gt(NzN,0()) -> u_4(is_NzNat(NzN))
          gt(0(),M) -> False()
          gt(s(N),s(M)) -> gt(N,M)
          is_NzNat(0()) -> False()
          is_NzNat(s(N)) -> True()
          u_4(True()) -> True()
      - Signature:
          {*/2,+/2,d/2,gcd/2,gt/2,is_NzNat/1,lt/2,p/1,quot/2,u_01/1,u_02/2,u_1/3,u_11/3,u_2/1,u_21/3,u_3/3,u_31/4
          ,u_4/1,*#/2,+#/2,d#/2,gcd#/2,gt#/2,is_NzNat#/1,lt#/2,p#/1,quot#/2,u_01#/1,u_02#/2,u_1#/3,u_11#/3,u_2#/1
          ,u_21#/3,u_3#/3,u_31#/4,u_4#/1} / {0/0,False/0,True/0,s/1,c_1/0,c_2/3,c_3/0,c_4/1,c_5/0,c_6/1,c_7/2,c_8/1
          ,c_9/0,c_10/2,c_11/0,c_12/1,c_13/0,c_14/0,c_15/1,c_16/0,c_17/1,c_18/1,c_19/2,c_20/0,c_21/0,c_22/2,c_23/2
          ,c_24/0,c_25/1,c_26/2,c_27/2,c_28/0}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {*#,+#,d#,gcd#,gt#,is_NzNat#,lt#,p#,quot#,u_01#,u_02#,u_1#
          ,u_11#,u_2#,u_21#,u_3#,u_31#,u_4#} and constructors {0,False,True,s}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE