MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            d(z,g(x,y)) -> g(e(x),d(z,y))
            d(z,g(0(),0())) -> e(0())
            d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
            g(e(x),e(y)) -> e(g(x,y))
            h(z,e(x)) -> h(c(z),d(z,x))
        - Signature:
            {d/2,g/2,h/2} / {0/0,c/1,e/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {d,g,h} and constructors {0,c,e}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
          d#(z,g(0(),0())) -> c_2()
          d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y))),d#(c(z),g(x,y)),g#(x,y),d#(z,g(x,y)),g#(x,y))
          g#(e(x),e(y)) -> c_4(g#(x,y))
          h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
            d#(z,g(0(),0())) -> c_2()
            d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y))),d#(c(z),g(x,y)),g#(x,y),d#(z,g(x,y)),g#(x,y))
            g#(e(x),e(y)) -> c_4(g#(x,y))
            h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
        - Weak TRS:
            d(z,g(x,y)) -> g(e(x),d(z,y))
            d(z,g(0(),0())) -> e(0())
            d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
            g(e(x),e(y)) -> e(g(x,y))
            h(z,e(x)) -> h(c(z),d(z,x))
        - Signature:
            {d/2,g/2,h/2,d#/2,g#/2,h#/2} / {0/0,c/1,e/1,c_1/2,c_2/0,c_3/5,c_4/1,c_5/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {d#,g#,h#} and constructors {0,c,e}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          d(z,g(x,y)) -> g(e(x),d(z,y))
          d(z,g(0(),0())) -> e(0())
          d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
          g(e(x),e(y)) -> e(g(x,y))
          d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
          d#(z,g(0(),0())) -> c_2()
          d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y))),d#(c(z),g(x,y)),g#(x,y),d#(z,g(x,y)),g#(x,y))
          g#(e(x),e(y)) -> c_4(g#(x,y))
          h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
            d#(z,g(0(),0())) -> c_2()
            d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y))),d#(c(z),g(x,y)),g#(x,y),d#(z,g(x,y)),g#(x,y))
            g#(e(x),e(y)) -> c_4(g#(x,y))
            h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
        - Weak TRS:
            d(z,g(x,y)) -> g(e(x),d(z,y))
            d(z,g(0(),0())) -> e(0())
            d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
            g(e(x),e(y)) -> e(g(x,y))
        - Signature:
            {d/2,g/2,h/2,d#/2,g#/2,h#/2} / {0/0,c/1,e/1,c_1/2,c_2/0,c_3/5,c_4/1,c_5/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {d#,g#,h#} and constructors {0,c,e}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2}
        by application of
          Pre({2}) = {1,3,5}.
        Here rules are labelled as follows:
          1: d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
          2: d#(z,g(0(),0())) -> c_2()
          3: d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y)))
                                          ,d#(c(z),g(x,y))
                                          ,g#(x,y)
                                          ,d#(z,g(x,y))
                                          ,g#(x,y))
          4: g#(e(x),e(y)) -> c_4(g#(x,y))
          5: h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
            d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y))),d#(c(z),g(x,y)),g#(x,y),d#(z,g(x,y)),g#(x,y))
            g#(e(x),e(y)) -> c_4(g#(x,y))
            h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
        - Weak DPs:
            d#(z,g(0(),0())) -> c_2()
        - Weak TRS:
            d(z,g(x,y)) -> g(e(x),d(z,y))
            d(z,g(0(),0())) -> e(0())
            d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
            g(e(x),e(y)) -> e(g(x,y))
        - Signature:
            {d/2,g/2,h/2,d#/2,g#/2,h#/2} / {0/0,c/1,e/1,c_1/2,c_2/0,c_3/5,c_4/1,c_5/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {d#,g#,h#} and constructors {0,c,e}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
             -->_1 g#(e(x),e(y)) -> c_4(g#(x,y)):3
             -->_2 d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y)))
                                                ,d#(c(z),g(x,y))
                                                ,g#(x,y)
                                                ,d#(z,g(x,y))
                                                ,g#(x,y)):2
             -->_2 d#(z,g(0(),0())) -> c_2():5
             -->_2 d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y)):1
          
          2:S:d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y)))
                                           ,d#(c(z),g(x,y))
                                           ,g#(x,y)
                                           ,d#(z,g(x,y))
                                           ,g#(x,y))
             -->_5 g#(e(x),e(y)) -> c_4(g#(x,y)):3
             -->_3 g#(e(x),e(y)) -> c_4(g#(x,y)):3
             -->_1 g#(e(x),e(y)) -> c_4(g#(x,y)):3
             -->_4 d#(z,g(0(),0())) -> c_2():5
             -->_2 d#(z,g(0(),0())) -> c_2():5
             -->_4 d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y)))
                                                ,d#(c(z),g(x,y))
                                                ,g#(x,y)
                                                ,d#(z,g(x,y))
                                                ,g#(x,y)):2
             -->_2 d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y)))
                                                ,d#(c(z),g(x,y))
                                                ,g#(x,y)
                                                ,d#(z,g(x,y))
                                                ,g#(x,y)):2
             -->_4 d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y)):1
             -->_2 d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y)):1
          
          3:S:g#(e(x),e(y)) -> c_4(g#(x,y))
             -->_1 g#(e(x),e(y)) -> c_4(g#(x,y)):3
          
          4:S:h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
             -->_2 d#(z,g(0(),0())) -> c_2():5
             -->_1 h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x)):4
             -->_2 d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y)))
                                                ,d#(c(z),g(x,y))
                                                ,g#(x,y)
                                                ,d#(z,g(x,y))
                                                ,g#(x,y)):2
             -->_2 d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y)):1
          
          5:W:d#(z,g(0(),0())) -> c_2()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: d#(z,g(0(),0())) -> c_2()
* Step 5: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          d#(z,g(x,y)) -> c_1(g#(e(x),d(z,y)),d#(z,y))
          d#(c(z),g(g(x,y),0())) -> c_3(g#(d(c(z),g(x,y)),d(z,g(x,y))),d#(c(z),g(x,y)),g#(x,y),d#(z,g(x,y)),g#(x,y))
          g#(e(x),e(y)) -> c_4(g#(x,y))
          h#(z,e(x)) -> c_5(h#(c(z),d(z,x)),d#(z,x))
      - Weak TRS:
          d(z,g(x,y)) -> g(e(x),d(z,y))
          d(z,g(0(),0())) -> e(0())
          d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
          g(e(x),e(y)) -> e(g(x,y))
      - Signature:
          {d/2,g/2,h/2,d#/2,g#/2,h#/2} / {0/0,c/1,e/1,c_1/2,c_2/0,c_3/5,c_4/1,c_5/2}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {d#,g#,h#} and constructors {0,c,e}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE