MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {min/2,plus/2,quot/2} / {0/0,Z/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {min,plus,quot} and constructors {0,Z,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,6} by application of Pre({1,4,6}) = {2,3,5,7}. Here rules are labelled as follows: 1: min#(X,0()) -> c_1() 2: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) 3: min#(s(X),s(Y)) -> c_3(min#(X,Y)) 4: plus#(0(),Y) -> c_4() 5: plus#(s(X),Y) -> c_5(plus#(X,Y)) 6: quot#(0(),s(Y)) -> c_6() 7: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak DPs: min#(X,0()) -> c_1() plus#(0(),Y) -> c_4() quot#(0(),s(Y)) -> c_6() - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) -->_2 plus#(s(X),Y) -> c_5(plus#(X,Y)):3 -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_2 plus#(0(),Y) -> c_4():6 -->_1 min#(X,0()) -> c_1():5 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 2:S:min#(s(X),s(Y)) -> c_3(min#(X,Y)) -->_1 min#(X,0()) -> c_1():5 -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 3:S:plus#(s(X),Y) -> c_5(plus#(X,Y)) -->_1 plus#(0(),Y) -> c_4():6 -->_1 plus#(s(X),Y) -> c_5(plus#(X,Y)):3 4:S:quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) -->_1 quot#(0(),s(Y)) -> c_6():7 -->_2 min#(X,0()) -> c_1():5 -->_1 quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)):4 -->_2 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_2 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 5:W:min#(X,0()) -> c_1() 6:W:plus#(0(),Y) -> c_4() 7:W:quot#(0(),s(Y)) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: quot#(0(),s(Y)) -> c_6() 5: min#(X,0()) -> c_1() 6: plus#(0(),Y) -> c_4() * Step 5: Failure MAYBE + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE