MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z)) from(X) -> cons(X,from(s(X))) sel(0(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,Z) - Signature: {first/2,from/1,sel/2} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {first,from,sel} and constructors {0,cons,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs first#(0(),Z) -> c_1() first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) from#(X) -> c_3(from#(s(X))) sel#(0(),cons(X,Z)) -> c_4() sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: first#(0(),Z) -> c_1() first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) from#(X) -> c_3(from#(s(X))) sel#(0(),cons(X,Z)) -> c_4() sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) - Weak TRS: first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z)) from(X) -> cons(X,from(s(X))) sel(0(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,Z) - Signature: {first/2,from/1,sel/2,first#/2,from#/1,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {first#,from#,sel#} and constructors {0,cons,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: first#(0(),Z) -> c_1() first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) from#(X) -> c_3(from#(s(X))) sel#(0(),cons(X,Z)) -> c_4() sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: first#(0(),Z) -> c_1() first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) from#(X) -> c_3(from#(s(X))) sel#(0(),cons(X,Z)) -> c_4() sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) - Signature: {first/2,from/1,sel/2,first#/2,from#/1,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {first#,from#,sel#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4} by application of Pre({1,4}) = {2,5}. Here rules are labelled as follows: 1: first#(0(),Z) -> c_1() 2: first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) 3: from#(X) -> c_3(from#(s(X))) 4: sel#(0(),cons(X,Z)) -> c_4() 5: sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) from#(X) -> c_3(from#(s(X))) sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) - Weak DPs: first#(0(),Z) -> c_1() sel#(0(),cons(X,Z)) -> c_4() - Signature: {first/2,from/1,sel/2,first#/2,from#/1,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {first#,from#,sel#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) -->_1 first#(0(),Z) -> c_1():4 -->_1 first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)):1 2:S:from#(X) -> c_3(from#(s(X))) -->_1 from#(X) -> c_3(from#(s(X))):2 3:S:sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) -->_1 sel#(0(),cons(X,Z)) -> c_4():5 -->_1 sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)):3 4:W:first#(0(),Z) -> c_1() 5:W:sel#(0(),cons(X,Z)) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: sel#(0(),cons(X,Z)) -> c_4() 4: first#(0(),Z) -> c_1() * Step 5: Failure MAYBE + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_2(first#(X,Z)) from#(X) -> c_3(from#(s(X))) sel#(s(X),cons(Y,Z)) -> c_5(sel#(X,Z)) - Signature: {first/2,from/1,sel/2,first#/2,from#/1,sel#/2} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {first#,from#,sel#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE