MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: adx(cons(X,Y)) -> incr(cons(X,adx(Y))) hd(cons(X,Y)) -> X incr(cons(X,Y)) -> cons(s(X),incr(Y)) nats() -> adx(zeros()) tl(cons(X,Y)) -> Y zeros() -> cons(0(),zeros()) - Signature: {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0} / {0/0,cons/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx,hd,incr,nats,tl,zeros} and constructors {0,cons,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) hd#(cons(X,Y)) -> c_2() incr#(cons(X,Y)) -> c_3(incr#(Y)) nats#() -> c_4(adx#(zeros()),zeros#()) tl#(cons(X,Y)) -> c_5() zeros#() -> c_6(zeros#()) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) hd#(cons(X,Y)) -> c_2() incr#(cons(X,Y)) -> c_3(incr#(Y)) nats#() -> c_4(adx#(zeros()),zeros#()) tl#(cons(X,Y)) -> c_5() zeros#() -> c_6(zeros#()) - Weak TRS: adx(cons(X,Y)) -> incr(cons(X,adx(Y))) hd(cons(X,Y)) -> X incr(cons(X,Y)) -> cons(s(X),incr(Y)) nats() -> adx(zeros()) tl(cons(X,Y)) -> Y zeros() -> cons(0(),zeros()) - Signature: {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0,adx#/1,hd#/1,incr#/1,nats#/0,tl#/1,zeros#/0} / {0/0,cons/2,s/1,c_1/2 ,c_2/0,c_3/1,c_4/2,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,hd#,incr#,nats#,tl#,zeros#} and constructors {0,cons ,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: adx(cons(X,Y)) -> incr(cons(X,adx(Y))) incr(cons(X,Y)) -> cons(s(X),incr(Y)) zeros() -> cons(0(),zeros()) adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) hd#(cons(X,Y)) -> c_2() incr#(cons(X,Y)) -> c_3(incr#(Y)) nats#() -> c_4(adx#(zeros()),zeros#()) tl#(cons(X,Y)) -> c_5() zeros#() -> c_6(zeros#()) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) hd#(cons(X,Y)) -> c_2() incr#(cons(X,Y)) -> c_3(incr#(Y)) nats#() -> c_4(adx#(zeros()),zeros#()) tl#(cons(X,Y)) -> c_5() zeros#() -> c_6(zeros#()) - Weak TRS: adx(cons(X,Y)) -> incr(cons(X,adx(Y))) incr(cons(X,Y)) -> cons(s(X),incr(Y)) zeros() -> cons(0(),zeros()) - Signature: {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0,adx#/1,hd#/1,incr#/1,nats#/0,tl#/1,zeros#/0} / {0/0,cons/2,s/1,c_1/2 ,c_2/0,c_3/1,c_4/2,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,hd#,incr#,nats#,tl#,zeros#} and constructors {0,cons ,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,5} by application of Pre({2,5}) = {}. Here rules are labelled as follows: 1: adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) 2: hd#(cons(X,Y)) -> c_2() 3: incr#(cons(X,Y)) -> c_3(incr#(Y)) 4: nats#() -> c_4(adx#(zeros()),zeros#()) 5: tl#(cons(X,Y)) -> c_5() 6: zeros#() -> c_6(zeros#()) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) incr#(cons(X,Y)) -> c_3(incr#(Y)) nats#() -> c_4(adx#(zeros()),zeros#()) zeros#() -> c_6(zeros#()) - Weak DPs: hd#(cons(X,Y)) -> c_2() tl#(cons(X,Y)) -> c_5() - Weak TRS: adx(cons(X,Y)) -> incr(cons(X,adx(Y))) incr(cons(X,Y)) -> cons(s(X),incr(Y)) zeros() -> cons(0(),zeros()) - Signature: {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0,adx#/1,hd#/1,incr#/1,nats#/0,tl#/1,zeros#/0} / {0/0,cons/2,s/1,c_1/2 ,c_2/0,c_3/1,c_4/2,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,hd#,incr#,nats#,tl#,zeros#} and constructors {0,cons ,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) -->_1 incr#(cons(X,Y)) -> c_3(incr#(Y)):2 -->_2 adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)):1 2:S:incr#(cons(X,Y)) -> c_3(incr#(Y)) -->_1 incr#(cons(X,Y)) -> c_3(incr#(Y)):2 3:S:nats#() -> c_4(adx#(zeros()),zeros#()) -->_2 zeros#() -> c_6(zeros#()):4 -->_1 adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)):1 4:S:zeros#() -> c_6(zeros#()) -->_1 zeros#() -> c_6(zeros#()):4 5:W:hd#(cons(X,Y)) -> c_2() 6:W:tl#(cons(X,Y)) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: tl#(cons(X,Y)) -> c_5() 5: hd#(cons(X,Y)) -> c_2() * Step 5: NaturalMI MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) incr#(cons(X,Y)) -> c_3(incr#(Y)) nats#() -> c_4(adx#(zeros()),zeros#()) zeros#() -> c_6(zeros#()) - Weak TRS: adx(cons(X,Y)) -> incr(cons(X,adx(Y))) incr(cons(X,Y)) -> cons(s(X),incr(Y)) zeros() -> cons(0(),zeros()) - Signature: {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0,adx#/1,hd#/1,incr#/1,nats#/0,tl#/1,zeros#/0} / {0/0,cons/2,s/1,c_1/2 ,c_2/0,c_3/1,c_4/2,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,hd#,incr#,nats#,tl#,zeros#} and constructors {0,cons ,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_3) = {1}, uargs(c_4) = {1,2}, uargs(c_6) = {1} Following symbols are considered usable: {adx#,hd#,incr#,nats#,tl#,zeros#} TcT has computed the following interpretation: p(0) = [8] p(adx) = [2] p(cons) = [2] p(hd) = [1] p(incr) = [6] p(nats) = [0] p(s) = [4] p(tl) = [4] x1 + [1] p(zeros) = [0] p(adx#) = [0] p(hd#) = [1] x1 + [8] p(incr#) = [0] p(nats#) = [2] p(tl#) = [1] p(zeros#) = [0] p(c_1) = [4] x1 + [4] x2 + [0] p(c_2) = [0] p(c_3) = [8] x1 + [0] p(c_4) = [8] x1 + [2] x2 + [0] p(c_5) = [2] p(c_6) = [8] x1 + [0] Following rules are strictly oriented: nats#() = [2] > [0] = c_4(adx#(zeros()),zeros#()) Following rules are (at-least) weakly oriented: adx#(cons(X,Y)) = [0] >= [0] = c_1(incr#(cons(X,adx(Y))),adx#(Y)) incr#(cons(X,Y)) = [0] >= [0] = c_3(incr#(Y)) zeros#() = [0] >= [0] = c_6(zeros#()) * Step 6: Failure MAYBE + Considered Problem: - Strict DPs: adx#(cons(X,Y)) -> c_1(incr#(cons(X,adx(Y))),adx#(Y)) incr#(cons(X,Y)) -> c_3(incr#(Y)) zeros#() -> c_6(zeros#()) - Weak DPs: nats#() -> c_4(adx#(zeros()),zeros#()) - Weak TRS: adx(cons(X,Y)) -> incr(cons(X,adx(Y))) incr(cons(X,Y)) -> cons(s(X),incr(Y)) zeros() -> cons(0(),zeros()) - Signature: {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0,adx#/1,hd#/1,incr#/1,nats#/0,tl#/1,zeros#/0} / {0/0,cons/2,s/1,c_1/2 ,c_2/0,c_3/1,c_4/2,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {adx#,hd#,incr#,nats#,tl#,zeros#} and constructors {0,cons ,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE