WORST_CASE(?,O(n^2)) * Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) All above mentioned rules can be savely removed. * Step 2: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(plus) = {2}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [0] p(2ndspos) = [1] x2 + [0] p(activate) = [9] x1 + [8] p(cons) = [8] x2 + [0] p(from) = [0] p(n__cons) = [1] x2 + [0] p(n__from) = [0] p(negrecip) = [1] x1 + [0] p(pi) = [1] x1 + [0] p(plus) = [1] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [1] p(square) = [0] p(times) = [15] Following rules are strictly oriented: activate(X) = [9] X + [8] > [1] X + [0] = X activate(n__cons(X1,X2)) = [9] X2 + [8] > [8] X2 + [0] = cons(X1,X2) activate(n__from(X)) = [8] > [0] = from(X) times(0(),Y) = [15] > [0] = 0() Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [0] >= [0] = rnil() 2ndspos(0(),Z) = [1] Z + [0] >= [0] = rnil() cons(X1,X2) = [8] X2 + [0] >= [1] X2 + [0] = n__cons(X1,X2) from(X) = [0] >= [0] = cons(X,n__from(s(X))) from(X) = [0] >= [0] = n__from(X) pi(X) = [1] X + [0] >= [0] = 2ndspos(X,from(0())) plus(0(),Y) = [1] Y + [0] >= [1] Y + [0] = Y plus(s(X),Y) = [1] Y + [0] >= [1] Y + [1] = s(plus(X,Y)) square(X) = [0] >= [15] = times(X,X) times(s(X),Y) = [15] >= [15] = plus(Y,times(X,Y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(s(X),Y) -> plus(Y,times(X,Y)) - Weak TRS: activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(plus) = {2}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [0] p(2ndspos) = [1] x2 + [15] p(activate) = [7] x1 + [0] p(cons) = [14] p(from) = [0] p(n__cons) = [2] p(n__from) = [0] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [1] x2 + [1] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [1] p(square) = [5] x1 + [0] p(times) = [5] x1 + [13] Following rules are strictly oriented: 2ndspos(0(),Z) = [1] Z + [15] > [0] = rnil() cons(X1,X2) = [14] > [2] = n__cons(X1,X2) plus(0(),Y) = [1] Y + [1] > [1] Y + [0] = Y times(s(X),Y) = [5] X + [18] > [5] X + [14] = plus(Y,times(X,Y)) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [0] >= [0] = rnil() activate(X) = [7] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [14] >= [14] = cons(X1,X2) activate(n__from(X)) = [0] >= [0] = from(X) from(X) = [0] >= [14] = cons(X,n__from(s(X))) from(X) = [0] >= [0] = n__from(X) pi(X) = [0] >= [15] = 2ndspos(X,from(0())) plus(s(X),Y) = [1] Y + [1] >= [1] Y + [2] = s(plus(X,Y)) square(X) = [5] X + [0] >= [5] X + [13] = times(X,X) times(0(),Y) = [13] >= [0] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: NaturalMI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) - Weak TRS: 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) plus(0(),Y) -> Y times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(plus) = {2}, uargs(s) = {1} Following symbols are considered usable: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times} TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [1] p(2ndspos) = [2] x2 + [0] p(activate) = [2] x1 + [0] p(cons) = [0] p(from) = [0] p(n__cons) = [0] p(n__from) = [0] p(negrecip) = [0] p(pi) = [0] p(plus) = [4] x2 + [0] p(posrecip) = [0] p(rcons) = [0] p(rnil) = [0] p(s) = [1] x1 + [0] p(square) = [0] p(times) = [0] Following rules are strictly oriented: 2ndsneg(0(),Z) = [1] > [0] = rnil() Following rules are (at-least) weakly oriented: 2ndspos(0(),Z) = [2] Z + [0] >= [0] = rnil() activate(X) = [2] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [0] >= [0] = cons(X1,X2) activate(n__from(X)) = [0] >= [0] = from(X) cons(X1,X2) = [0] >= [0] = n__cons(X1,X2) from(X) = [0] >= [0] = cons(X,n__from(s(X))) from(X) = [0] >= [0] = n__from(X) pi(X) = [0] >= [0] = 2ndspos(X,from(0())) plus(0(),Y) = [4] Y + [0] >= [1] Y + [0] = Y plus(s(X),Y) = [4] Y + [0] >= [4] Y + [0] = s(plus(X,Y)) square(X) = [0] >= [0] = times(X,X) times(0(),Y) = [0] >= [0] = 0() times(s(X),Y) = [0] >= [0] = plus(Y,times(X,Y)) * Step 5: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) plus(0(),Y) -> Y times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(plus) = {2}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [2] x2 + [0] p(2ndspos) = [1] x2 + [11] p(activate) = [12] x1 + [0] p(cons) = [1] x1 + [0] p(from) = [8] x1 + [0] p(n__cons) = [1] x1 + [0] p(n__from) = [1] x1 + [0] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [1] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [0] p(square) = [1] p(times) = [0] Following rules are strictly oriented: square(X) = [1] > [0] = times(X,X) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [2] Z + [0] >= [0] = rnil() 2ndspos(0(),Z) = [1] Z + [11] >= [0] = rnil() activate(X) = [12] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [12] X1 + [0] >= [1] X1 + [0] = cons(X1,X2) activate(n__from(X)) = [12] X + [0] >= [8] X + [0] = from(X) cons(X1,X2) = [1] X1 + [0] >= [1] X1 + [0] = n__cons(X1,X2) from(X) = [8] X + [0] >= [1] X + [0] = cons(X,n__from(s(X))) from(X) = [8] X + [0] >= [1] X + [0] = n__from(X) pi(X) = [0] >= [11] = 2ndspos(X,from(0())) plus(0(),Y) = [1] Y + [0] >= [1] Y + [0] = Y plus(s(X),Y) = [1] Y + [0] >= [1] Y + [0] = s(plus(X,Y)) times(0(),Y) = [0] >= [0] = 0() times(s(X),Y) = [0] >= [0] = plus(Y,times(X,Y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: NaturalMI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(s(X),Y) -> s(plus(X,Y)) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) plus(0(),Y) -> Y square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(plus) = {2}, uargs(s) = {1} Following symbols are considered usable: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times} TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [0] p(2ndspos) = [2] x2 + [0] p(activate) = [2] x1 + [0] p(cons) = [0] p(from) = [3] p(n__cons) = [0] p(n__from) = [2] p(negrecip) = [1] x1 + [0] p(pi) = [6] p(plus) = [8] x2 + [0] p(posrecip) = [0] p(rcons) = [0] p(rnil) = [0] p(s) = [1] x1 + [0] p(square) = [0] p(times) = [0] Following rules are strictly oriented: from(X) = [3] > [0] = cons(X,n__from(s(X))) from(X) = [3] > [2] = n__from(X) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [0] >= [0] = rnil() 2ndspos(0(),Z) = [2] Z + [0] >= [0] = rnil() activate(X) = [2] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [0] >= [0] = cons(X1,X2) activate(n__from(X)) = [4] >= [3] = from(X) cons(X1,X2) = [0] >= [0] = n__cons(X1,X2) pi(X) = [6] >= [6] = 2ndspos(X,from(0())) plus(0(),Y) = [8] Y + [0] >= [1] Y + [0] = Y plus(s(X),Y) = [8] Y + [0] >= [8] Y + [0] = s(plus(X,Y)) square(X) = [0] >= [0] = times(X,X) times(0(),Y) = [0] >= [0] = 0() times(s(X),Y) = [0] >= [0] = plus(Y,times(X,Y)) * Step 7: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: pi(X) -> 2ndspos(X,from(0())) plus(s(X),Y) -> s(plus(X,Y)) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(plus) = {2}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(2ndsneg) = [1] p(2ndspos) = [2] x1 + [1] x2 + [4] p(activate) = [2] x1 + [1] p(cons) = [0] p(from) = [1] p(n__cons) = [0] p(n__from) = [0] p(negrecip) = [1] p(pi) = [3] x1 + [6] p(plus) = [1] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x2 + [1] p(rnil) = [0] p(s) = [1] x1 + [0] p(square) = [4] x1 + [0] p(times) = [4] x1 + [0] Following rules are strictly oriented: pi(X) = [3] X + [6] > [2] X + [5] = 2ndspos(X,from(0())) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [1] >= [0] = rnil() 2ndspos(0(),Z) = [1] Z + [8] >= [0] = rnil() activate(X) = [2] X + [1] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [1] >= [0] = cons(X1,X2) activate(n__from(X)) = [1] >= [1] = from(X) cons(X1,X2) = [0] >= [0] = n__cons(X1,X2) from(X) = [1] >= [0] = cons(X,n__from(s(X))) from(X) = [1] >= [0] = n__from(X) plus(0(),Y) = [1] Y + [0] >= [1] Y + [0] = Y plus(s(X),Y) = [1] Y + [0] >= [1] Y + [0] = s(plus(X,Y)) square(X) = [4] X + [0] >= [4] X + [0] = times(X,X) times(0(),Y) = [8] >= [2] = 0() times(s(X),Y) = [4] X + [0] >= [4] X + [0] = plus(Y,times(X,Y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: plus(s(X),Y) -> s(plus(X,Y)) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(plus) = {2}, uargs(s) = {1} Following symbols are considered usable: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times} TcT has computed the following interpretation: p(0) = 0 p(2ndsneg) = x1^2 p(2ndspos) = x1*x2 + 2*x2 p(activate) = 4*x1 p(cons) = 0 p(from) = 0 p(n__cons) = 0 p(n__from) = 0 p(negrecip) = 1 + x1 p(pi) = 1 + x1 p(plus) = 2*x1 + x2 p(posrecip) = 1 p(rcons) = 1 p(rnil) = 0 p(s) = 1 + x1 p(square) = 5*x1 + 4*x1^2 p(times) = 2*x1*x2 + 2*x1^2 + 2*x2 Following rules are strictly oriented: plus(s(X),Y) = 2 + 2*X + Y > 1 + 2*X + Y = s(plus(X,Y)) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = 0 >= 0 = rnil() 2ndspos(0(),Z) = 2*Z >= 0 = rnil() activate(X) = 4*X >= X = X activate(n__cons(X1,X2)) = 0 >= 0 = cons(X1,X2) activate(n__from(X)) = 0 >= 0 = from(X) cons(X1,X2) = 0 >= 0 = n__cons(X1,X2) from(X) = 0 >= 0 = cons(X,n__from(s(X))) from(X) = 0 >= 0 = n__from(X) pi(X) = 1 + X >= 0 = 2ndspos(X,from(0())) plus(0(),Y) = Y >= Y = Y square(X) = 5*X + 4*X^2 >= 2*X + 4*X^2 = times(X,X) times(0(),Y) = 2*Y >= 0 = 0() times(s(X),Y) = 2 + 4*X + 2*X*Y + 2*X^2 + 4*Y >= 2*X*Y + 2*X^2 + 4*Y = plus(Y,times(X,Y)) * Step 9: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1 ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))