WORST_CASE(?,O(n^2))
* Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            div(X1,X2) -> n__div(X1,X2)
            div(0(),n__s(Y)) -> 0()
            div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(n__div(n__minus(X,activate(Y)),n__s(activate(Y)))),n__0())
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          div(0(),n__s(Y)) -> 0()
          div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(n__div(n__minus(X,activate(Y)),n__s(activate(Y)))),n__0())
        All above mentioned rules can be savely removed.
* Step 2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            div(X1,X2) -> n__div(X1,X2)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(geq) = {1,2},
            uargs(minus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
            p(activate) = [1] x1 + [5]                  
                 p(div) = [1] x1 + [1] x2 + [7]         
               p(false) = [0]                           
                 p(geq) = [1] x1 + [1] x2 + [8]         
                  p(if) = [7] x1 + [1] x2 + [3] x3 + [1]
               p(minus) = [1] x1 + [1] x2 + [8]         
                p(n__0) = [11]                          
              p(n__div) = [1] x1 + [1] x2 + [3]         
            p(n__minus) = [1] x1 + [1] x2 + [2]         
                p(n__s) = [1] x1 + [0]                  
                   p(s) = [1] x1 + [0]                  
                p(true) = [4]                           
          
          Following rules are strictly oriented:
                  activate(X) = [1] X + [5]          
                              > [1] X + [0]          
                              = X                    
          
             activate(n__0()) = [16]                 
                              > [0]                  
                              = 0()                  
          
                   div(X1,X2) = [1] X1 + [1] X2 + [7]
                              > [1] X1 + [1] X2 + [3]
                              = n__div(X1,X2)        
          
                geq(X,n__0()) = [1] X + [19]         
                              > [4]                  
                              = true()               
          
          geq(n__0(),n__s(Y)) = [1] Y + [19]         
                              > [0]                  
                              = false()              
          
               if(true(),X,Y) = [1] X + [3] Y + [29] 
                              > [1] X + [5]          
                              = activate(X)          
          
                 minus(X1,X2) = [1] X1 + [1] X2 + [8]
                              > [1] X1 + [1] X2 + [2]
                              = n__minus(X1,X2)      
          
              minus(n__0(),Y) = [1] Y + [19]         
                              > [0]                  
                              = 0()                  
          
          
          Following rules are (at-least) weakly oriented:
                                0() =  [0]                           
                                    >= [11]                          
                                    =  n__0()                        
          
            activate(n__div(X1,X2)) =  [1] X1 + [1] X2 + [8]         
                                    >= [1] X1 + [1] X2 + [12]        
                                    =  div(activate(X1),X2)          
          
          activate(n__minus(X1,X2)) =  [1] X1 + [1] X2 + [7]         
                                    >= [1] X1 + [1] X2 + [8]         
                                    =  minus(X1,X2)                  
          
                  activate(n__s(X)) =  [1] X + [5]                   
                                    >= [1] X + [5]                   
                                    =  s(activate(X))                
          
               geq(n__s(X),n__s(Y)) =  [1] X + [1] Y + [8]           
                                    >= [1] X + [1] Y + [18]          
                                    =  geq(activate(X),activate(Y))  
          
                    if(false(),X,Y) =  [1] X + [3] Y + [1]           
                                    >= [1] Y + [5]                   
                                    =  activate(Y)                   
          
             minus(n__s(X),n__s(Y)) =  [1] X + [1] Y + [8]           
                                    >= [1] X + [1] Y + [18]          
                                    =  minus(activate(X),activate(Y))
          
                               s(X) =  [1] X + [0]                   
                                    >= [1] X + [0]                   
                                    =  n__s(X)                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__0()) -> 0()
            div(X1,X2) -> n__div(X1,X2)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(geq) = {1,2},
            uargs(minus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [10]                  
            p(activate) = [1] x1 + [14]         
                 p(div) = [1] x1 + [0]          
               p(false) = [15]                  
                 p(geq) = [1] x1 + [1] x2 + [3] 
                  p(if) = [1] x2 + [1] x3 + [14]
               p(minus) = [1] x1 + [1] x2 + [2] 
                p(n__0) = [8]                   
              p(n__div) = [1] x1 + [0]          
            p(n__minus) = [1] x1 + [1] x2 + [2] 
                p(n__s) = [1] x1 + [4]          
                   p(s) = [1] x1 + [0]          
                p(true) = [11]                  
          
          Following rules are strictly oriented:
                                0() = [10]                  
                                    > [8]                   
                                    = n__0()                
          
          activate(n__minus(X1,X2)) = [1] X1 + [1] X2 + [16]
                                    > [1] X1 + [1] X2 + [2] 
                                    = minus(X1,X2)          
          
                  activate(n__s(X)) = [1] X + [18]          
                                    > [1] X + [14]          
                                    = s(activate(X))        
          
          
          Following rules are (at-least) weakly oriented:
                      activate(X) =  [1] X + [14]                  
                                  >= [1] X + [0]                   
                                  =  X                             
          
                 activate(n__0()) =  [22]                          
                                  >= [10]                          
                                  =  0()                           
          
          activate(n__div(X1,X2)) =  [1] X1 + [14]                 
                                  >= [1] X1 + [14]                 
                                  =  div(activate(X1),X2)          
          
                       div(X1,X2) =  [1] X1 + [0]                  
                                  >= [1] X1 + [0]                  
                                  =  n__div(X1,X2)                 
          
                    geq(X,n__0()) =  [1] X + [11]                  
                                  >= [11]                          
                                  =  true()                        
          
              geq(n__0(),n__s(Y)) =  [1] Y + [15]                  
                                  >= [15]                          
                                  =  false()                       
          
             geq(n__s(X),n__s(Y)) =  [1] X + [1] Y + [11]          
                                  >= [1] X + [1] Y + [31]          
                                  =  geq(activate(X),activate(Y))  
          
                  if(false(),X,Y) =  [1] X + [1] Y + [14]          
                                  >= [1] Y + [14]                  
                                  =  activate(Y)                   
          
                   if(true(),X,Y) =  [1] X + [1] Y + [14]          
                                  >= [1] X + [14]                  
                                  =  activate(X)                   
          
                     minus(X1,X2) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [2]         
                                  =  n__minus(X1,X2)               
          
                  minus(n__0(),Y) =  [1] Y + [10]                  
                                  >= [10]                          
                                  =  0()                           
          
           minus(n__s(X),n__s(Y)) =  [1] X + [1] Y + [10]          
                                  >= [1] X + [1] Y + [30]          
                                  =  minus(activate(X),activate(Y))
          
                             s(X) =  [1] X + [0]                   
                                  >= [1] X + [4]                   
                                  =  n__s(X)                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            div(X1,X2) -> n__div(X1,X2)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {0,activate,div,geq,if,minus,s}
        TcT has computed the following interpretation:
                 p(0) = [3]                           
          p(activate) = [1] x1 + [0]                  
               p(div) = [1] x1 + [8]                  
             p(false) = [2]                           
               p(geq) = [1] x1 + [4] x2 + [0]         
                p(if) = [8] x1 + [1] x2 + [1] x3 + [0]
             p(minus) = [1] x1 + [1] x2 + [1]         
              p(n__0) = [3]                           
            p(n__div) = [1] x1 + [8]                  
          p(n__minus) = [1] x1 + [1] x2 + [1]         
              p(n__s) = [1] x1 + [0]                  
                 p(s) = [1] x1 + [0]                  
              p(true) = [0]                           
        
        Following rules are strictly oriented:
        if(false(),X,Y) = [1] X + [1] Y + [16]
                        > [1] Y + [0]         
                        = activate(Y)         
        
        
        Following rules are (at-least) weakly oriented:
                              0() =  [3]                           
                                  >= [3]                           
                                  =  n__0()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                 activate(n__0()) =  [3]                           
                                  >= [3]                           
                                  =  0()                           
        
          activate(n__div(X1,X2)) =  [1] X1 + [8]                  
                                  >= [1] X1 + [8]                  
                                  =  div(activate(X1),X2)          
        
        activate(n__minus(X1,X2)) =  [1] X1 + [1] X2 + [1]         
                                  >= [1] X1 + [1] X2 + [1]         
                                  =  minus(X1,X2)                  
        
                activate(n__s(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  s(activate(X))                
        
                       div(X1,X2) =  [1] X1 + [8]                  
                                  >= [1] X1 + [8]                  
                                  =  n__div(X1,X2)                 
        
                    geq(X,n__0()) =  [1] X + [12]                  
                                  >= [0]                           
                                  =  true()                        
        
              geq(n__0(),n__s(Y)) =  [4] Y + [3]                   
                                  >= [2]                           
                                  =  false()                       
        
             geq(n__s(X),n__s(Y)) =  [1] X + [4] Y + [0]           
                                  >= [1] X + [4] Y + [0]           
                                  =  geq(activate(X),activate(Y))  
        
                   if(true(),X,Y) =  [1] X + [1] Y + [0]           
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                     minus(X1,X2) =  [1] X1 + [1] X2 + [1]         
                                  >= [1] X1 + [1] X2 + [1]         
                                  =  n__minus(X1,X2)               
        
                  minus(n__0(),Y) =  [1] Y + [4]                   
                                  >= [3]                           
                                  =  0()                           
        
           minus(n__s(X),n__s(Y)) =  [1] X + [1] Y + [1]           
                                  >= [1] X + [1] Y + [1]           
                                  =  minus(activate(X),activate(Y))
        
                             s(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__s(X)                       
        
* Step 5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            div(X1,X2) -> n__div(X1,X2)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(geq) = {1,2},
            uargs(minus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
            p(activate) = [1] x1 + [0]                  
                 p(div) = [1] x1 + [1] x2 + [0]         
               p(false) = [5]                           
                 p(geq) = [1] x1 + [1] x2 + [0]         
                  p(if) = [3] x1 + [1] x2 + [1] x3 + [0]
               p(minus) = [1] x1 + [1] x2 + [0]         
                p(n__0) = [0]                           
              p(n__div) = [1] x1 + [1] x2 + [0]         
            p(n__minus) = [1] x1 + [1] x2 + [0]         
                p(n__s) = [1] x1 + [5]                  
                   p(s) = [1] x1 + [5]                  
                p(true) = [0]                           
          
          Following rules are strictly oriented:
            geq(n__s(X),n__s(Y)) = [1] X + [1] Y + [10]          
                                 > [1] X + [1] Y + [0]           
                                 = geq(activate(X),activate(Y))  
          
          minus(n__s(X),n__s(Y)) = [1] X + [1] Y + [10]          
                                 > [1] X + [1] Y + [0]           
                                 = minus(activate(X),activate(Y))
          
          
          Following rules are (at-least) weakly oriented:
                                0() =  [0]                  
                                    >= [0]                  
                                    =  n__0()               
          
                        activate(X) =  [1] X + [0]          
                                    >= [1] X + [0]          
                                    =  X                    
          
                   activate(n__0()) =  [0]                  
                                    >= [0]                  
                                    =  0()                  
          
            activate(n__div(X1,X2)) =  [1] X1 + [1] X2 + [0]
                                    >= [1] X1 + [1] X2 + [0]
                                    =  div(activate(X1),X2) 
          
          activate(n__minus(X1,X2)) =  [1] X1 + [1] X2 + [0]
                                    >= [1] X1 + [1] X2 + [0]
                                    =  minus(X1,X2)         
          
                  activate(n__s(X)) =  [1] X + [5]          
                                    >= [1] X + [5]          
                                    =  s(activate(X))       
          
                         div(X1,X2) =  [1] X1 + [1] X2 + [0]
                                    >= [1] X1 + [1] X2 + [0]
                                    =  n__div(X1,X2)        
          
                      geq(X,n__0()) =  [1] X + [0]          
                                    >= [0]                  
                                    =  true()               
          
                geq(n__0(),n__s(Y)) =  [1] Y + [5]          
                                    >= [5]                  
                                    =  false()              
          
                    if(false(),X,Y) =  [1] X + [1] Y + [15] 
                                    >= [1] Y + [0]          
                                    =  activate(Y)          
          
                     if(true(),X,Y) =  [1] X + [1] Y + [0]  
                                    >= [1] X + [0]          
                                    =  activate(X)          
          
                       minus(X1,X2) =  [1] X1 + [1] X2 + [0]
                                    >= [1] X1 + [1] X2 + [0]
                                    =  n__minus(X1,X2)      
          
                    minus(n__0(),Y) =  [1] Y + [0]          
                                    >= [0]                  
                                    =  0()                  
          
                               s(X) =  [1] X + [5]          
                                    >= [1] X + [5]          
                                    =  n__s(X)              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            div(X1,X2) -> n__div(X1,X2)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {0,activate,div,geq,if,minus,s}
        TcT has computed the following interpretation:
                 p(0) = [0]                                 
                        [4]                                 
          p(activate) = [1 2] x1 + [0]                      
                        [0 1]      [0]                      
               p(div) = [1 0] x1 + [0]                      
                        [0 1]      [1]                      
             p(false) = [0]                                 
                        [1]                                 
               p(geq) = [2 0] x1 + [1 1] x2 + [4]           
                        [2 2]      [0 2]      [4]           
                p(if) = [4 0] x1 + [1 3] x2 + [4 4] x3 + [1]
                        [6 2]      [4 1]      [0 2]      [0]
             p(minus) = [1 2] x1 + [1 0] x2 + [1]           
                        [0 1]      [0 0]      [2]           
              p(n__0) = [0]                                 
                        [4]                                 
            p(n__div) = [1 0] x1 + [0]                      
                        [0 1]      [1]                      
          p(n__minus) = [1 0] x1 + [1 0] x2 + [0]           
                        [0 1]      [0 0]      [2]           
              p(n__s) = [1 4] x1 + [2]                      
                        [0 1]      [0]                      
                 p(s) = [1 4] x1 + [2]                      
                        [0 1]      [0]                      
              p(true) = [2]                                 
                        [1]                                 
        
        Following rules are strictly oriented:
        activate(n__div(X1,X2)) = [1 2] X1 + [2]      
                                  [0 1]      [1]      
                                > [1 2] X1 + [0]      
                                  [0 1]      [1]      
                                = div(activate(X1),X2)
        
        
        Following rules are (at-least) weakly oriented:
                              0() =  [0]                           
                                     [4]                           
                                  >= [0]                           
                                     [4]                           
                                  =  n__0()                        
        
                      activate(X) =  [1 2] X + [0]                 
                                     [0 1]     [0]                 
                                  >= [1 0] X + [0]                 
                                     [0 1]     [0]                 
                                  =  X                             
        
                 activate(n__0()) =  [8]                           
                                     [4]                           
                                  >= [0]                           
                                     [4]                           
                                  =  0()                           
        
        activate(n__minus(X1,X2)) =  [1 2] X1 + [1 0] X2 + [4]     
                                     [0 1]      [0 0]      [2]     
                                  >= [1 2] X1 + [1 0] X2 + [1]     
                                     [0 1]      [0 0]      [2]     
                                  =  minus(X1,X2)                  
        
                activate(n__s(X)) =  [1 6] X + [2]                 
                                     [0 1]     [0]                 
                                  >= [1 6] X + [2]                 
                                     [0 1]     [0]                 
                                  =  s(activate(X))                
        
                       div(X1,X2) =  [1 0] X1 + [0]                
                                     [0 1]      [1]                
                                  >= [1 0] X1 + [0]                
                                     [0 1]      [1]                
                                  =  n__div(X1,X2)                 
        
                    geq(X,n__0()) =  [2 0] X + [8]                 
                                     [2 2]     [12]                
                                  >= [2]                           
                                     [1]                           
                                  =  true()                        
        
              geq(n__0(),n__s(Y)) =  [1 5] Y + [6]                 
                                     [0 2]     [12]                
                                  >= [0]                           
                                     [1]                           
                                  =  false()                       
        
             geq(n__s(X),n__s(Y)) =  [2  8] X + [1 5] Y + [10]     
                                     [2 10]     [0 2]     [8]      
                                  >= [2 4] X + [1 3] Y + [4]       
                                     [2 6]     [0 2]     [4]       
                                  =  geq(activate(X),activate(Y))  
        
                  if(false(),X,Y) =  [1 3] X + [4 4] Y + [1]       
                                     [4 1]     [0 2]     [2]       
                                  >= [1 2] Y + [0]                 
                                     [0 1]     [0]                 
                                  =  activate(Y)                   
        
                   if(true(),X,Y) =  [1 3] X + [4 4] Y + [9]       
                                     [4 1]     [0 2]     [14]      
                                  >= [1 2] X + [0]                 
                                     [0 1]     [0]                 
                                  =  activate(X)                   
        
                     minus(X1,X2) =  [1 2] X1 + [1 0] X2 + [1]     
                                     [0 1]      [0 0]      [2]     
                                  >= [1 0] X1 + [1 0] X2 + [0]     
                                     [0 1]      [0 0]      [2]     
                                  =  n__minus(X1,X2)               
        
                  minus(n__0(),Y) =  [1 0] Y + [9]                 
                                     [0 0]     [6]                 
                                  >= [0]                           
                                     [4]                           
                                  =  0()                           
        
           minus(n__s(X),n__s(Y)) =  [1 6] X + [1 4] Y + [5]       
                                     [0 1]     [0 0]     [2]       
                                  >= [1 4] X + [1 2] Y + [1]       
                                     [0 1]     [0 0]     [2]       
                                  =  minus(activate(X),activate(Y))
        
                             s(X) =  [1 4] X + [2]                 
                                     [0 1]     [0]                 
                                  >= [1 4] X + [2]                 
                                     [0 1]     [0]                 
                                  =  n__s(X)                       
        
* Step 7: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            div(X1,X2) -> n__div(X1,X2)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {0,activate,div,geq,if,minus,s}
        TcT has computed the following interpretation:
                 p(0) = [1]                                 
                        [0]                                 
          p(activate) = [1 4] x1 + [0]                      
                        [0 1]      [0]                      
               p(div) = [1 0] x1 + [4]                      
                        [0 1]      [1]                      
             p(false) = [0]                                 
                        [2]                                 
               p(geq) = [1 1] x1 + [1 0] x2 + [0]           
                        [0 1]      [2 3]      [7]           
                p(if) = [0 4] x1 + [4 6] x2 + [1 4] x3 + [5]
                        [1 0]      [4 4]      [0 4]      [4]
             p(minus) = [1 0] x1 + [1 0] x2 + [0]           
                        [0 0]      [0 0]      [0]           
              p(n__0) = [1]                                 
                        [0]                                 
            p(n__div) = [1 0] x1 + [0]                      
                        [0 1]      [1]                      
          p(n__minus) = [1 0] x1 + [1 0] x2 + [0]           
                        [0 0]      [0 0]      [0]           
              p(n__s) = [1 4] x1 + [0]                      
                        [0 1]      [1]                      
                 p(s) = [1 4] x1 + [4]                      
                        [0 1]      [1]                      
              p(true) = [0]                                 
                        [0]                                 
        
        Following rules are strictly oriented:
        s(X) = [1 4] X + [4]
               [0 1]     [1]
             > [1 4] X + [0]
               [0 1]     [1]
             = n__s(X)      
        
        
        Following rules are (at-least) weakly oriented:
                              0() =  [1]                           
                                     [0]                           
                                  >= [1]                           
                                     [0]                           
                                  =  n__0()                        
        
                      activate(X) =  [1 4] X + [0]                 
                                     [0 1]     [0]                 
                                  >= [1 0] X + [0]                 
                                     [0 1]     [0]                 
                                  =  X                             
        
                 activate(n__0()) =  [1]                           
                                     [0]                           
                                  >= [1]                           
                                     [0]                           
                                  =  0()                           
        
          activate(n__div(X1,X2)) =  [1 4] X1 + [4]                
                                     [0 1]      [1]                
                                  >= [1 4] X1 + [4]                
                                     [0 1]      [1]                
                                  =  div(activate(X1),X2)          
        
        activate(n__minus(X1,X2)) =  [1 0] X1 + [1 0] X2 + [0]     
                                     [0 0]      [0 0]      [0]     
                                  >= [1 0] X1 + [1 0] X2 + [0]     
                                     [0 0]      [0 0]      [0]     
                                  =  minus(X1,X2)                  
        
                activate(n__s(X)) =  [1 8] X + [4]                 
                                     [0 1]     [1]                 
                                  >= [1 8] X + [4]                 
                                     [0 1]     [1]                 
                                  =  s(activate(X))                
        
                       div(X1,X2) =  [1 0] X1 + [4]                
                                     [0 1]      [1]                
                                  >= [1 0] X1 + [0]                
                                     [0 1]      [1]                
                                  =  n__div(X1,X2)                 
        
                    geq(X,n__0()) =  [1 1] X + [1]                 
                                     [0 1]     [9]                 
                                  >= [0]                           
                                     [0]                           
                                  =  true()                        
        
              geq(n__0(),n__s(Y)) =  [1  4] Y + [1]                
                                     [2 11]     [10]               
                                  >= [0]                           
                                     [2]                           
                                  =  false()                       
        
             geq(n__s(X),n__s(Y)) =  [1 5] X + [1  4] Y + [1]      
                                     [0 1]     [2 11]     [11]     
                                  >= [1 5] X + [1  4] Y + [0]      
                                     [0 1]     [2 11]     [7]      
                                  =  geq(activate(X),activate(Y))  
        
                  if(false(),X,Y) =  [4 6] X + [1 4] Y + [13]      
                                     [4 4]     [0 4]     [4]       
                                  >= [1 4] Y + [0]                 
                                     [0 1]     [0]                 
                                  =  activate(Y)                   
        
                   if(true(),X,Y) =  [4 6] X + [1 4] Y + [5]       
                                     [4 4]     [0 4]     [4]       
                                  >= [1 4] X + [0]                 
                                     [0 1]     [0]                 
                                  =  activate(X)                   
        
                     minus(X1,X2) =  [1 0] X1 + [1 0] X2 + [0]     
                                     [0 0]      [0 0]      [0]     
                                  >= [1 0] X1 + [1 0] X2 + [0]     
                                     [0 0]      [0 0]      [0]     
                                  =  n__minus(X1,X2)               
        
                  minus(n__0(),Y) =  [1 0] Y + [1]                 
                                     [0 0]     [0]                 
                                  >= [1]                           
                                     [0]                           
                                  =  0()                           
        
           minus(n__s(X),n__s(Y)) =  [1 4] X + [1 4] Y + [0]       
                                     [0 0]     [0 0]     [0]       
                                  >= [1 4] X + [1 4] Y + [0]       
                                     [0 0]     [0 0]     [0]       
                                  =  minus(activate(X),activate(Y))
        
* Step 8: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__div(X1,X2)) -> div(activate(X1),X2)
            activate(n__minus(X1,X2)) -> minus(X1,X2)
            activate(n__s(X)) -> s(activate(X))
            div(X1,X2) -> n__div(X1,X2)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(X1,X2) -> n__minus(X1,X2)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__div,n__minus,n__s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))