MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(f(X)) -> f(active(X))
            active(f(X)) -> mark(cons(X,f(g(X))))
            active(g(X)) -> g(active(X))
            active(g(0())) -> mark(s(0()))
            active(g(s(X))) -> mark(s(s(g(X))))
            active(s(X)) -> s(active(X))
            active(sel(X1,X2)) -> sel(X1,active(X2))
            active(sel(X1,X2)) -> sel(active(X1),X2)
            active(sel(0(),cons(X,Y))) -> mark(X)
            active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            f(mark(X)) -> mark(f(X))
            f(ok(X)) -> ok(f(X))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(f(X)) -> f(proper(X))
            proper(g(X)) -> g(proper(X))
            proper(s(X)) -> s(proper(X))
            proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            sel(X1,mark(X2)) -> mark(sel(X1,X2))
            sel(mark(X1),X2) -> mark(sel(X1,X2))
            sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,cons/2,f/1,g/1,proper/1,s/1,sel/2,top/1} / {0/0,mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,cons,f,g,proper,s,sel,top} and constructors {0
            ,mark,ok}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
          active#(f(X)) -> c_2(f#(active(X)),active#(X))
          active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
          active#(g(X)) -> c_4(g#(active(X)),active#(X))
          active#(g(0())) -> c_5(s#(0()))
          active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
          active#(s(X)) -> c_7(s#(active(X)),active#(X))
          active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
          active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
          active#(sel(0(),cons(X,Y))) -> c_10()
          active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
          cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
          cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
          f#(mark(X)) -> c_14(f#(X))
          f#(ok(X)) -> c_15(f#(X))
          g#(mark(X)) -> c_16(g#(X))
          g#(ok(X)) -> c_17(g#(X))
          proper#(0()) -> c_18()
          proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
          proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
          proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
          proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          s#(mark(X)) -> c_24(s#(X))
          s#(ok(X)) -> c_25(s#(X))
          sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
          sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
          sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
          top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
          top#(ok(X)) -> c_30(top#(active(X)),active#(X))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
            active#(f(X)) -> c_2(f#(active(X)),active#(X))
            active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
            active#(g(X)) -> c_4(g#(active(X)),active#(X))
            active#(g(0())) -> c_5(s#(0()))
            active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
            active#(s(X)) -> c_7(s#(active(X)),active#(X))
            active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
            active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
            active#(sel(0(),cons(X,Y))) -> c_10()
            active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
            cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
            cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
            f#(mark(X)) -> c_14(f#(X))
            f#(ok(X)) -> c_15(f#(X))
            g#(mark(X)) -> c_16(g#(X))
            g#(ok(X)) -> c_17(g#(X))
            proper#(0()) -> c_18()
            proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
            proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
            proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
            proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            s#(mark(X)) -> c_24(s#(X))
            s#(ok(X)) -> c_25(s#(X))
            sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
            sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
            sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
            top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_30(top#(active(X)),active#(X))
        - Weak TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(f(X)) -> f(active(X))
            active(f(X)) -> mark(cons(X,f(g(X))))
            active(g(X)) -> g(active(X))
            active(g(0())) -> mark(s(0()))
            active(g(s(X))) -> mark(s(s(g(X))))
            active(s(X)) -> s(active(X))
            active(sel(X1,X2)) -> sel(X1,active(X2))
            active(sel(X1,X2)) -> sel(active(X1),X2)
            active(sel(0(),cons(X,Y))) -> mark(X)
            active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            f(mark(X)) -> mark(f(X))
            f(ok(X)) -> ok(f(X))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(f(X)) -> f(proper(X))
            proper(g(X)) -> g(proper(X))
            proper(s(X)) -> s(proper(X))
            proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            sel(X1,mark(X2)) -> mark(sel(X1,X2))
            sel(mark(X1),X2) -> mark(sel(X1,X2))
            sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,cons/2,f/1,g/1,proper/1,s/1,sel/2,top/1,active#/1,cons#/2,f#/1,g#/1,proper#/1,s#/1,sel#/2
            ,top#/1} / {0/0,mark/1,ok/1,c_1/2,c_2/2,c_3/3,c_4/2,c_5/1,c_6/3,c_7/2,c_8/2,c_9/2,c_10/0,c_11/1,c_12/1
            ,c_13/1,c_14/1,c_15/1,c_16/1,c_17/1,c_18/0,c_19/3,c_20/2,c_21/2,c_22/2,c_23/3,c_24/1,c_25/1,c_26/1,c_27/1
            ,c_28/1,c_29/2,c_30/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,cons#,f#,g#,proper#,s#,sel#
            ,top#} and constructors {0,mark,ok}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          active(cons(X1,X2)) -> cons(active(X1),X2)
          active(f(X)) -> f(active(X))
          active(f(X)) -> mark(cons(X,f(g(X))))
          active(g(X)) -> g(active(X))
          active(g(0())) -> mark(s(0()))
          active(g(s(X))) -> mark(s(s(g(X))))
          active(s(X)) -> s(active(X))
          active(sel(X1,X2)) -> sel(X1,active(X2))
          active(sel(X1,X2)) -> sel(active(X1),X2)
          active(sel(0(),cons(X,Y))) -> mark(X)
          active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
          cons(mark(X1),X2) -> mark(cons(X1,X2))
          cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
          f(mark(X)) -> mark(f(X))
          f(ok(X)) -> ok(f(X))
          g(mark(X)) -> mark(g(X))
          g(ok(X)) -> ok(g(X))
          proper(0()) -> ok(0())
          proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
          proper(f(X)) -> f(proper(X))
          proper(g(X)) -> g(proper(X))
          proper(s(X)) -> s(proper(X))
          proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
          s(mark(X)) -> mark(s(X))
          s(ok(X)) -> ok(s(X))
          sel(X1,mark(X2)) -> mark(sel(X1,X2))
          sel(mark(X1),X2) -> mark(sel(X1,X2))
          sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
          active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
          active#(f(X)) -> c_2(f#(active(X)),active#(X))
          active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
          active#(g(X)) -> c_4(g#(active(X)),active#(X))
          active#(g(0())) -> c_5(s#(0()))
          active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
          active#(s(X)) -> c_7(s#(active(X)),active#(X))
          active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
          active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
          active#(sel(0(),cons(X,Y))) -> c_10()
          active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
          cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
          cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
          f#(mark(X)) -> c_14(f#(X))
          f#(ok(X)) -> c_15(f#(X))
          g#(mark(X)) -> c_16(g#(X))
          g#(ok(X)) -> c_17(g#(X))
          proper#(0()) -> c_18()
          proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
          proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
          proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
          proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          s#(mark(X)) -> c_24(s#(X))
          s#(ok(X)) -> c_25(s#(X))
          sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
          sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
          sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
          top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
          top#(ok(X)) -> c_30(top#(active(X)),active#(X))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
            active#(f(X)) -> c_2(f#(active(X)),active#(X))
            active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
            active#(g(X)) -> c_4(g#(active(X)),active#(X))
            active#(g(0())) -> c_5(s#(0()))
            active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
            active#(s(X)) -> c_7(s#(active(X)),active#(X))
            active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
            active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
            active#(sel(0(),cons(X,Y))) -> c_10()
            active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
            cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
            cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
            f#(mark(X)) -> c_14(f#(X))
            f#(ok(X)) -> c_15(f#(X))
            g#(mark(X)) -> c_16(g#(X))
            g#(ok(X)) -> c_17(g#(X))
            proper#(0()) -> c_18()
            proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
            proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
            proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
            proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            s#(mark(X)) -> c_24(s#(X))
            s#(ok(X)) -> c_25(s#(X))
            sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
            sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
            sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
            top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_30(top#(active(X)),active#(X))
        - Weak TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(f(X)) -> f(active(X))
            active(f(X)) -> mark(cons(X,f(g(X))))
            active(g(X)) -> g(active(X))
            active(g(0())) -> mark(s(0()))
            active(g(s(X))) -> mark(s(s(g(X))))
            active(s(X)) -> s(active(X))
            active(sel(X1,X2)) -> sel(X1,active(X2))
            active(sel(X1,X2)) -> sel(active(X1),X2)
            active(sel(0(),cons(X,Y))) -> mark(X)
            active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            f(mark(X)) -> mark(f(X))
            f(ok(X)) -> ok(f(X))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(f(X)) -> f(proper(X))
            proper(g(X)) -> g(proper(X))
            proper(s(X)) -> s(proper(X))
            proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            sel(X1,mark(X2)) -> mark(sel(X1,X2))
            sel(mark(X1),X2) -> mark(sel(X1,X2))
            sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
        - Signature:
            {active/1,cons/2,f/1,g/1,proper/1,s/1,sel/2,top/1,active#/1,cons#/2,f#/1,g#/1,proper#/1,s#/1,sel#/2
            ,top#/1} / {0/0,mark/1,ok/1,c_1/2,c_2/2,c_3/3,c_4/2,c_5/1,c_6/3,c_7/2,c_8/2,c_9/2,c_10/0,c_11/1,c_12/1
            ,c_13/1,c_14/1,c_15/1,c_16/1,c_17/1,c_18/0,c_19/3,c_20/2,c_21/2,c_22/2,c_23/3,c_24/1,c_25/1,c_26/1,c_27/1
            ,c_28/1,c_29/2,c_30/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,cons#,f#,g#,proper#,s#,sel#
            ,top#} and constructors {0,mark,ok}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {5,10,18}
        by application of
          Pre({5,10,18}) = {1,2,4,7,8,9,19,20,21,22,23,29,30}.
        Here rules are labelled as follows:
          1: active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
          2: active#(f(X)) -> c_2(f#(active(X)),active#(X))
          3: active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
          4: active#(g(X)) -> c_4(g#(active(X)),active#(X))
          5: active#(g(0())) -> c_5(s#(0()))
          6: active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
          7: active#(s(X)) -> c_7(s#(active(X)),active#(X))
          8: active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
          9: active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
          10: active#(sel(0(),cons(X,Y))) -> c_10()
          11: active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
          12: cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
          13: cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
          14: f#(mark(X)) -> c_14(f#(X))
          15: f#(ok(X)) -> c_15(f#(X))
          16: g#(mark(X)) -> c_16(g#(X))
          17: g#(ok(X)) -> c_17(g#(X))
          18: proper#(0()) -> c_18()
          19: proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          20: proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
          21: proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
          22: proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
          23: proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          24: s#(mark(X)) -> c_24(s#(X))
          25: s#(ok(X)) -> c_25(s#(X))
          26: sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
          27: sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
          28: sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
          29: top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
          30: top#(ok(X)) -> c_30(top#(active(X)),active#(X))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
            active#(f(X)) -> c_2(f#(active(X)),active#(X))
            active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
            active#(g(X)) -> c_4(g#(active(X)),active#(X))
            active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
            active#(s(X)) -> c_7(s#(active(X)),active#(X))
            active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
            active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
            active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
            cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
            cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
            f#(mark(X)) -> c_14(f#(X))
            f#(ok(X)) -> c_15(f#(X))
            g#(mark(X)) -> c_16(g#(X))
            g#(ok(X)) -> c_17(g#(X))
            proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
            proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
            proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
            proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            s#(mark(X)) -> c_24(s#(X))
            s#(ok(X)) -> c_25(s#(X))
            sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
            sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
            sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
            top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_30(top#(active(X)),active#(X))
        - Weak DPs:
            active#(g(0())) -> c_5(s#(0()))
            active#(sel(0(),cons(X,Y))) -> c_10()
            proper#(0()) -> c_18()
        - Weak TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(f(X)) -> f(active(X))
            active(f(X)) -> mark(cons(X,f(g(X))))
            active(g(X)) -> g(active(X))
            active(g(0())) -> mark(s(0()))
            active(g(s(X))) -> mark(s(s(g(X))))
            active(s(X)) -> s(active(X))
            active(sel(X1,X2)) -> sel(X1,active(X2))
            active(sel(X1,X2)) -> sel(active(X1),X2)
            active(sel(0(),cons(X,Y))) -> mark(X)
            active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            f(mark(X)) -> mark(f(X))
            f(ok(X)) -> ok(f(X))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(f(X)) -> f(proper(X))
            proper(g(X)) -> g(proper(X))
            proper(s(X)) -> s(proper(X))
            proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            sel(X1,mark(X2)) -> mark(sel(X1,X2))
            sel(mark(X1),X2) -> mark(sel(X1,X2))
            sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
        - Signature:
            {active/1,cons/2,f/1,g/1,proper/1,s/1,sel/2,top/1,active#/1,cons#/2,f#/1,g#/1,proper#/1,s#/1,sel#/2
            ,top#/1} / {0/0,mark/1,ok/1,c_1/2,c_2/2,c_3/3,c_4/2,c_5/1,c_6/3,c_7/2,c_8/2,c_9/2,c_10/0,c_11/1,c_12/1
            ,c_13/1,c_14/1,c_15/1,c_16/1,c_17/1,c_18/0,c_19/3,c_20/2,c_21/2,c_22/2,c_23/3,c_24/1,c_25/1,c_26/1,c_27/1
            ,c_28/1,c_29/2,c_30/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,cons#,f#,g#,proper#,s#,sel#
            ,top#} and constructors {0,mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
             -->_1 cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2)):11
             -->_1 cons#(mark(X1),X2) -> c_12(cons#(X1,X2)):10
             -->_2 active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z)):9
             -->_2 active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1)):8
             -->_2 active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2)):7
             -->_2 active#(s(X)) -> c_7(s#(active(X)),active#(X)):6
             -->_2 active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X)):5
             -->_2 active#(g(X)) -> c_4(g#(active(X)),active#(X)):4
             -->_2 active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X)):3
             -->_2 active#(f(X)) -> c_2(f#(active(X)),active#(X)):2
             -->_2 active#(sel(0(),cons(X,Y))) -> c_10():29
             -->_2 active#(g(0())) -> c_5(s#(0())):28
             -->_2 active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1)):1
          
          2:S:active#(f(X)) -> c_2(f#(active(X)),active#(X))
             -->_1 f#(ok(X)) -> c_15(f#(X)):13
             -->_1 f#(mark(X)) -> c_14(f#(X)):12
             -->_2 active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z)):9
             -->_2 active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1)):8
             -->_2 active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2)):7
             -->_2 active#(s(X)) -> c_7(s#(active(X)),active#(X)):6
             -->_2 active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X)):5
             -->_2 active#(g(X)) -> c_4(g#(active(X)),active#(X)):4
             -->_2 active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X)):3
             -->_2 active#(sel(0(),cons(X,Y))) -> c_10():29
             -->_2 active#(g(0())) -> c_5(s#(0())):28
             -->_2 active#(f(X)) -> c_2(f#(active(X)),active#(X)):2
             -->_2 active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1)):1
          
          3:S:active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
             -->_3 g#(ok(X)) -> c_17(g#(X)):15
             -->_3 g#(mark(X)) -> c_16(g#(X)):14
             -->_2 f#(ok(X)) -> c_15(f#(X)):13
             -->_2 f#(mark(X)) -> c_14(f#(X)):12
             -->_1 cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2)):11
             -->_1 cons#(mark(X1),X2) -> c_12(cons#(X1,X2)):10
          
          4:S:active#(g(X)) -> c_4(g#(active(X)),active#(X))
             -->_1 g#(ok(X)) -> c_17(g#(X)):15
             -->_1 g#(mark(X)) -> c_16(g#(X)):14
             -->_2 active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z)):9
             -->_2 active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1)):8
             -->_2 active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2)):7
             -->_2 active#(s(X)) -> c_7(s#(active(X)),active#(X)):6
             -->_2 active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X)):5
             -->_2 active#(sel(0(),cons(X,Y))) -> c_10():29
             -->_2 active#(g(0())) -> c_5(s#(0())):28
             -->_2 active#(g(X)) -> c_4(g#(active(X)),active#(X)):4
             -->_2 active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X)):3
             -->_2 active#(f(X)) -> c_2(f#(active(X)),active#(X)):2
             -->_2 active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1)):1
          
          5:S:active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
             -->_2 s#(ok(X)) -> c_25(s#(X)):22
             -->_1 s#(ok(X)) -> c_25(s#(X)):22
             -->_2 s#(mark(X)) -> c_24(s#(X)):21
             -->_1 s#(mark(X)) -> c_24(s#(X)):21
             -->_3 g#(ok(X)) -> c_17(g#(X)):15
             -->_3 g#(mark(X)) -> c_16(g#(X)):14
          
          6:S:active#(s(X)) -> c_7(s#(active(X)),active#(X))
             -->_1 s#(ok(X)) -> c_25(s#(X)):22
             -->_1 s#(mark(X)) -> c_24(s#(X)):21
             -->_2 active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z)):9
             -->_2 active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1)):8
             -->_2 active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2)):7
             -->_2 active#(sel(0(),cons(X,Y))) -> c_10():29
             -->_2 active#(g(0())) -> c_5(s#(0())):28
             -->_2 active#(s(X)) -> c_7(s#(active(X)),active#(X)):6
             -->_2 active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X)):5
             -->_2 active#(g(X)) -> c_4(g#(active(X)),active#(X)):4
             -->_2 active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X)):3
             -->_2 active#(f(X)) -> c_2(f#(active(X)),active#(X)):2
             -->_2 active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1)):1
          
          7:S:active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
             -->_1 sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2)):25
             -->_1 sel#(mark(X1),X2) -> c_27(sel#(X1,X2)):24
             -->_1 sel#(X1,mark(X2)) -> c_26(sel#(X1,X2)):23
             -->_2 active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z)):9
             -->_2 active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1)):8
             -->_2 active#(sel(0(),cons(X,Y))) -> c_10():29
             -->_2 active#(g(0())) -> c_5(s#(0())):28
             -->_2 active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2)):7
             -->_2 active#(s(X)) -> c_7(s#(active(X)),active#(X)):6
             -->_2 active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X)):5
             -->_2 active#(g(X)) -> c_4(g#(active(X)),active#(X)):4
             -->_2 active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X)):3
             -->_2 active#(f(X)) -> c_2(f#(active(X)),active#(X)):2
             -->_2 active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1)):1
          
          8:S:active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
             -->_1 sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2)):25
             -->_1 sel#(mark(X1),X2) -> c_27(sel#(X1,X2)):24
             -->_1 sel#(X1,mark(X2)) -> c_26(sel#(X1,X2)):23
             -->_2 active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z)):9
             -->_2 active#(sel(0(),cons(X,Y))) -> c_10():29
             -->_2 active#(g(0())) -> c_5(s#(0())):28
             -->_2 active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1)):8
             -->_2 active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2)):7
             -->_2 active#(s(X)) -> c_7(s#(active(X)),active#(X)):6
             -->_2 active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X)):5
             -->_2 active#(g(X)) -> c_4(g#(active(X)),active#(X)):4
             -->_2 active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X)):3
             -->_2 active#(f(X)) -> c_2(f#(active(X)),active#(X)):2
             -->_2 active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1)):1
          
          9:S:active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
             -->_1 sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2)):25
             -->_1 sel#(mark(X1),X2) -> c_27(sel#(X1,X2)):24
             -->_1 sel#(X1,mark(X2)) -> c_26(sel#(X1,X2)):23
          
          10:S:cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
             -->_1 cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2)):11
             -->_1 cons#(mark(X1),X2) -> c_12(cons#(X1,X2)):10
          
          11:S:cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
             -->_1 cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2)):11
             -->_1 cons#(mark(X1),X2) -> c_12(cons#(X1,X2)):10
          
          12:S:f#(mark(X)) -> c_14(f#(X))
             -->_1 f#(ok(X)) -> c_15(f#(X)):13
             -->_1 f#(mark(X)) -> c_14(f#(X)):12
          
          13:S:f#(ok(X)) -> c_15(f#(X))
             -->_1 f#(ok(X)) -> c_15(f#(X)):13
             -->_1 f#(mark(X)) -> c_14(f#(X)):12
          
          14:S:g#(mark(X)) -> c_16(g#(X))
             -->_1 g#(ok(X)) -> c_17(g#(X)):15
             -->_1 g#(mark(X)) -> c_16(g#(X)):14
          
          15:S:g#(ok(X)) -> c_17(g#(X))
             -->_1 g#(ok(X)) -> c_17(g#(X)):15
             -->_1 g#(mark(X)) -> c_16(g#(X)):14
          
          16:S:proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
             -->_3 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_2 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_3 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_2 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_3 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_2 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_3 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_2 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_3 proper#(0()) -> c_18():30
             -->_2 proper#(0()) -> c_18():30
             -->_3 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
             -->_2 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
             -->_1 cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2)):11
             -->_1 cons#(mark(X1),X2) -> c_12(cons#(X1,X2)):10
          
          17:S:proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
             -->_2 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_2 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_2 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_2 proper#(0()) -> c_18():30
             -->_2 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_2 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
             -->_1 f#(ok(X)) -> c_15(f#(X)):13
             -->_1 f#(mark(X)) -> c_14(f#(X)):12
          
          18:S:proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
             -->_2 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_2 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_2 proper#(0()) -> c_18():30
             -->_2 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_2 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_2 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
             -->_1 g#(ok(X)) -> c_17(g#(X)):15
             -->_1 g#(mark(X)) -> c_16(g#(X)):14
          
          19:S:proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
             -->_1 s#(ok(X)) -> c_25(s#(X)):22
             -->_1 s#(mark(X)) -> c_24(s#(X)):21
             -->_2 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_2 proper#(0()) -> c_18():30
             -->_2 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_2 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_2 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_2 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
          
          20:S:proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
             -->_1 sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2)):25
             -->_1 sel#(mark(X1),X2) -> c_27(sel#(X1,X2)):24
             -->_1 sel#(X1,mark(X2)) -> c_26(sel#(X1,X2)):23
             -->_3 proper#(0()) -> c_18():30
             -->_2 proper#(0()) -> c_18():30
             -->_3 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_2 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_3 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_2 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_3 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_2 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_3 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_2 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_3 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
             -->_2 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
          
          21:S:s#(mark(X)) -> c_24(s#(X))
             -->_1 s#(ok(X)) -> c_25(s#(X)):22
             -->_1 s#(mark(X)) -> c_24(s#(X)):21
          
          22:S:s#(ok(X)) -> c_25(s#(X))
             -->_1 s#(ok(X)) -> c_25(s#(X)):22
             -->_1 s#(mark(X)) -> c_24(s#(X)):21
          
          23:S:sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
             -->_1 sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2)):25
             -->_1 sel#(mark(X1),X2) -> c_27(sel#(X1,X2)):24
             -->_1 sel#(X1,mark(X2)) -> c_26(sel#(X1,X2)):23
          
          24:S:sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
             -->_1 sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2)):25
             -->_1 sel#(mark(X1),X2) -> c_27(sel#(X1,X2)):24
             -->_1 sel#(X1,mark(X2)) -> c_26(sel#(X1,X2)):23
          
          25:S:sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
             -->_1 sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2)):25
             -->_1 sel#(mark(X1),X2) -> c_27(sel#(X1,X2)):24
             -->_1 sel#(X1,mark(X2)) -> c_26(sel#(X1,X2)):23
          
          26:S:top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
             -->_1 top#(ok(X)) -> c_30(top#(active(X)),active#(X)):27
             -->_2 proper#(0()) -> c_18():30
             -->_1 top#(mark(X)) -> c_29(top#(proper(X)),proper#(X)):26
             -->_2 proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):20
             -->_2 proper#(s(X)) -> c_22(s#(proper(X)),proper#(X)):19
             -->_2 proper#(g(X)) -> c_21(g#(proper(X)),proper#(X)):18
             -->_2 proper#(f(X)) -> c_20(f#(proper(X)),proper#(X)):17
             -->_2 proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):16
          
          27:S:top#(ok(X)) -> c_30(top#(active(X)),active#(X))
             -->_2 active#(sel(0(),cons(X,Y))) -> c_10():29
             -->_2 active#(g(0())) -> c_5(s#(0())):28
             -->_1 top#(ok(X)) -> c_30(top#(active(X)),active#(X)):27
             -->_1 top#(mark(X)) -> c_29(top#(proper(X)),proper#(X)):26
             -->_2 active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z)):9
             -->_2 active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1)):8
             -->_2 active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2)):7
             -->_2 active#(s(X)) -> c_7(s#(active(X)),active#(X)):6
             -->_2 active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X)):5
             -->_2 active#(g(X)) -> c_4(g#(active(X)),active#(X)):4
             -->_2 active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X)):3
             -->_2 active#(f(X)) -> c_2(f#(active(X)),active#(X)):2
             -->_2 active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1)):1
          
          28:W:active#(g(0())) -> c_5(s#(0()))
             
          
          29:W:active#(sel(0(),cons(X,Y))) -> c_10()
             
          
          30:W:proper#(0()) -> c_18()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          30: proper#(0()) -> c_18()
          28: active#(g(0())) -> c_5(s#(0()))
          29: active#(sel(0(),cons(X,Y))) -> c_10()
* Step 5: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          active#(cons(X1,X2)) -> c_1(cons#(active(X1),X2),active#(X1))
          active#(f(X)) -> c_2(f#(active(X)),active#(X))
          active#(f(X)) -> c_3(cons#(X,f(g(X))),f#(g(X)),g#(X))
          active#(g(X)) -> c_4(g#(active(X)),active#(X))
          active#(g(s(X))) -> c_6(s#(s(g(X))),s#(g(X)),g#(X))
          active#(s(X)) -> c_7(s#(active(X)),active#(X))
          active#(sel(X1,X2)) -> c_8(sel#(X1,active(X2)),active#(X2))
          active#(sel(X1,X2)) -> c_9(sel#(active(X1),X2),active#(X1))
          active#(sel(s(X),cons(Y,Z))) -> c_11(sel#(X,Z))
          cons#(mark(X1),X2) -> c_12(cons#(X1,X2))
          cons#(ok(X1),ok(X2)) -> c_13(cons#(X1,X2))
          f#(mark(X)) -> c_14(f#(X))
          f#(ok(X)) -> c_15(f#(X))
          g#(mark(X)) -> c_16(g#(X))
          g#(ok(X)) -> c_17(g#(X))
          proper#(cons(X1,X2)) -> c_19(cons#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          proper#(f(X)) -> c_20(f#(proper(X)),proper#(X))
          proper#(g(X)) -> c_21(g#(proper(X)),proper#(X))
          proper#(s(X)) -> c_22(s#(proper(X)),proper#(X))
          proper#(sel(X1,X2)) -> c_23(sel#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          s#(mark(X)) -> c_24(s#(X))
          s#(ok(X)) -> c_25(s#(X))
          sel#(X1,mark(X2)) -> c_26(sel#(X1,X2))
          sel#(mark(X1),X2) -> c_27(sel#(X1,X2))
          sel#(ok(X1),ok(X2)) -> c_28(sel#(X1,X2))
          top#(mark(X)) -> c_29(top#(proper(X)),proper#(X))
          top#(ok(X)) -> c_30(top#(active(X)),active#(X))
      - Weak TRS:
          active(cons(X1,X2)) -> cons(active(X1),X2)
          active(f(X)) -> f(active(X))
          active(f(X)) -> mark(cons(X,f(g(X))))
          active(g(X)) -> g(active(X))
          active(g(0())) -> mark(s(0()))
          active(g(s(X))) -> mark(s(s(g(X))))
          active(s(X)) -> s(active(X))
          active(sel(X1,X2)) -> sel(X1,active(X2))
          active(sel(X1,X2)) -> sel(active(X1),X2)
          active(sel(0(),cons(X,Y))) -> mark(X)
          active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
          cons(mark(X1),X2) -> mark(cons(X1,X2))
          cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
          f(mark(X)) -> mark(f(X))
          f(ok(X)) -> ok(f(X))
          g(mark(X)) -> mark(g(X))
          g(ok(X)) -> ok(g(X))
          proper(0()) -> ok(0())
          proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
          proper(f(X)) -> f(proper(X))
          proper(g(X)) -> g(proper(X))
          proper(s(X)) -> s(proper(X))
          proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
          s(mark(X)) -> mark(s(X))
          s(ok(X)) -> ok(s(X))
          sel(X1,mark(X2)) -> mark(sel(X1,X2))
          sel(mark(X1),X2) -> mark(sel(X1,X2))
          sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
      - Signature:
          {active/1,cons/2,f/1,g/1,proper/1,s/1,sel/2,top/1,active#/1,cons#/2,f#/1,g#/1,proper#/1,s#/1,sel#/2
          ,top#/1} / {0/0,mark/1,ok/1,c_1/2,c_2/2,c_3/3,c_4/2,c_5/1,c_6/3,c_7/2,c_8/2,c_9/2,c_10/0,c_11/1,c_12/1
          ,c_13/1,c_14/1,c_15/1,c_16/1,c_17/1,c_18/0,c_19/3,c_20/2,c_21/2,c_22/2,c_23/3,c_24/1,c_25/1,c_26/1,c_27/1
          ,c_28/1,c_29/2,c_30/2}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {active#,cons#,f#,g#,proper#,s#,sel#
          ,top#} and constructors {0,mark,ok}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE