MAYBE
* Step 1: InnermostRuleRemoval MAYBE
    + Considered Problem:
        - Strict TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y))))
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,f,g,gt,h,id,if,k,m,minus,n,not,p
            ,t} and constructors {0,false,s,true}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y))))
        All above mentioned rules can be savely removed.
* Step 2: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,f,g,gt,h,id,if,k,m,minus,n,not,p
            ,t} and constructors {0,false,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          and#(x,false()) -> c_1()
          and#(true(),true()) -> c_2()
          f#(0()) -> c_3()
          f#(s(x)) -> c_4(h#(x))
          g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                  ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                  ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                              ,and#(f(s(x)),f(s(y)))
                              ,f#(s(x))
                              ,f#(s(y))
                              ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                              ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                              ,minus#(m(x,y),n(x,y))
                              ,m#(x,y)
                              ,n#(x,y)
                              ,k#(n(s(x),s(y)),s(s(0())))
                              ,n#(s(x),s(y))
                              ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                              ,minus#(m(x,y),n(x,y))
                              ,m#(x,y)
                              ,n#(x,y)
                              ,n#(s(x),s(y)))
          gt#(0(),y) -> c_6()
          gt#(s(x),0()) -> c_7()
          gt#(s(x),s(y)) -> c_8(gt#(x,y))
          h#(0()) -> c_9()
          h#(s(x)) -> c_10(f#(x))
          id#(x) -> c_11()
          if#(false(),x,y) -> c_12()
          if#(true(),x,y) -> c_13()
          k#(0(),s(y)) -> c_14()
          k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
          m#(x,0()) -> c_16()
          m#(0(),y) -> c_17()
          m#(s(x),s(y)) -> c_18(m#(x,y))
          minus#(x,0()) -> c_19()
          minus#(s(x),s(y)) -> c_20(minus#(x,y))
          n#(x,0()) -> c_21()
          n#(0(),y) -> c_22()
          n#(s(x),s(y)) -> c_23(n#(x,y))
          not#(x) -> c_24(if#(x,false(),true()))
          p#(0(),y) -> c_25()
          p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
          p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                               ,if#(gt(x,y),x,y)
                               ,gt#(x,y)
                               ,if#(not(gt(x,y)),id(x),id(y))
                               ,not#(gt(x,y))
                               ,gt#(x,y)
                               ,id#(x)
                               ,id#(y))
          t#(x) -> c_28(p#(x,x))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            and#(x,false()) -> c_1()
            and#(true(),true()) -> c_2()
            f#(0()) -> c_3()
            f#(s(x)) -> c_4(h#(x))
            g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                    ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                    ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                ,and#(f(s(x)),f(s(y)))
                                ,f#(s(x))
                                ,f#(s(y))
                                ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,k#(n(s(x),s(y)),s(s(0())))
                                ,n#(s(x),s(y))
                                ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,n#(s(x),s(y)))
            gt#(0(),y) -> c_6()
            gt#(s(x),0()) -> c_7()
            gt#(s(x),s(y)) -> c_8(gt#(x,y))
            h#(0()) -> c_9()
            h#(s(x)) -> c_10(f#(x))
            id#(x) -> c_11()
            if#(false(),x,y) -> c_12()
            if#(true(),x,y) -> c_13()
            k#(0(),s(y)) -> c_14()
            k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
            m#(x,0()) -> c_16()
            m#(0(),y) -> c_17()
            m#(s(x),s(y)) -> c_18(m#(x,y))
            minus#(x,0()) -> c_19()
            minus#(s(x),s(y)) -> c_20(minus#(x,y))
            n#(x,0()) -> c_21()
            n#(0(),y) -> c_22()
            n#(s(x),s(y)) -> c_23(n#(x,y))
            not#(x) -> c_24(if#(x,false(),true()))
            p#(0(),y) -> c_25()
            p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
            p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                 ,if#(gt(x,y),x,y)
                                 ,gt#(x,y)
                                 ,if#(not(gt(x,y)),id(x),id(y))
                                 ,not#(gt(x,y))
                                 ,gt#(x,y)
                                 ,id#(x)
                                 ,id#(y))
            t#(x) -> c_28(p#(x,x))
        - Weak TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1,and#/2,f#/1,g#/2,gt#/2,h#/1,id#/1,if#/3
            ,k#/2,m#/2,minus#/2,n#/2,not#/1,p#/2,t#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/17,c_6/0
            ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0,c_17/0,c_18/1,c_19/0,c_20/1,c_21/0
            ,c_22/0,c_23/1,c_24/1,c_25/0,c_26/5,c_27/8,c_28/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and#,f#,g#,gt#,h#,id#,if#,k#,m#,minus#,n#,not#,p#
            ,t#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3,6,7,9,11,12,13,14,16,17,19,21,22,25}
        by application of
          Pre({1,2,3,6,7,9,11,12,13,14,16,17,19,21,22,25}) = {4,5,8,10,15,18,20,23,24,26,27,28}.
        Here rules are labelled as follows:
          1: and#(x,false()) -> c_1()
          2: and#(true(),true()) -> c_2()
          3: f#(0()) -> c_3()
          4: f#(s(x)) -> c_4(h#(x))
          5: g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                     ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                     ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                 ,and#(f(s(x)),f(s(y)))
                                 ,f#(s(x))
                                 ,f#(s(y))
                                 ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                 ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                 ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                 ,minus#(m(x,y),n(x,y))
                                 ,m#(x,y)
                                 ,n#(x,y)
                                 ,k#(n(s(x),s(y)),s(s(0())))
                                 ,n#(s(x),s(y))
                                 ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                 ,minus#(m(x,y),n(x,y))
                                 ,m#(x,y)
                                 ,n#(x,y)
                                 ,n#(s(x),s(y)))
          6: gt#(0(),y) -> c_6()
          7: gt#(s(x),0()) -> c_7()
          8: gt#(s(x),s(y)) -> c_8(gt#(x,y))
          9: h#(0()) -> c_9()
          10: h#(s(x)) -> c_10(f#(x))
          11: id#(x) -> c_11()
          12: if#(false(),x,y) -> c_12()
          13: if#(true(),x,y) -> c_13()
          14: k#(0(),s(y)) -> c_14()
          15: k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
          16: m#(x,0()) -> c_16()
          17: m#(0(),y) -> c_17()
          18: m#(s(x),s(y)) -> c_18(m#(x,y))
          19: minus#(x,0()) -> c_19()
          20: minus#(s(x),s(y)) -> c_20(minus#(x,y))
          21: n#(x,0()) -> c_21()
          22: n#(0(),y) -> c_22()
          23: n#(s(x),s(y)) -> c_23(n#(x,y))
          24: not#(x) -> c_24(if#(x,false(),true()))
          25: p#(0(),y) -> c_25()
          26: p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
          27: p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                   ,if#(gt(x,y),x,y)
                                   ,gt#(x,y)
                                   ,if#(not(gt(x,y)),id(x),id(y))
                                   ,not#(gt(x,y))
                                   ,gt#(x,y)
                                   ,id#(x)
                                   ,id#(y))
          28: t#(x) -> c_28(p#(x,x))
* Step 4: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_4(h#(x))
            g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                    ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                    ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                ,and#(f(s(x)),f(s(y)))
                                ,f#(s(x))
                                ,f#(s(y))
                                ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,k#(n(s(x),s(y)),s(s(0())))
                                ,n#(s(x),s(y))
                                ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,n#(s(x),s(y)))
            gt#(s(x),s(y)) -> c_8(gt#(x,y))
            h#(s(x)) -> c_10(f#(x))
            k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
            m#(s(x),s(y)) -> c_18(m#(x,y))
            minus#(s(x),s(y)) -> c_20(minus#(x,y))
            n#(s(x),s(y)) -> c_23(n#(x,y))
            not#(x) -> c_24(if#(x,false(),true()))
            p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
            p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                 ,if#(gt(x,y),x,y)
                                 ,gt#(x,y)
                                 ,if#(not(gt(x,y)),id(x),id(y))
                                 ,not#(gt(x,y))
                                 ,gt#(x,y)
                                 ,id#(x)
                                 ,id#(y))
            t#(x) -> c_28(p#(x,x))
        - Weak DPs:
            and#(x,false()) -> c_1()
            and#(true(),true()) -> c_2()
            f#(0()) -> c_3()
            gt#(0(),y) -> c_6()
            gt#(s(x),0()) -> c_7()
            h#(0()) -> c_9()
            id#(x) -> c_11()
            if#(false(),x,y) -> c_12()
            if#(true(),x,y) -> c_13()
            k#(0(),s(y)) -> c_14()
            m#(x,0()) -> c_16()
            m#(0(),y) -> c_17()
            minus#(x,0()) -> c_19()
            n#(x,0()) -> c_21()
            n#(0(),y) -> c_22()
            p#(0(),y) -> c_25()
        - Weak TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1,and#/2,f#/1,g#/2,gt#/2,h#/1,id#/1,if#/3
            ,k#/2,m#/2,minus#/2,n#/2,not#/1,p#/2,t#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/17,c_6/0
            ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0,c_17/0,c_18/1,c_19/0,c_20/1,c_21/0
            ,c_22/0,c_23/1,c_24/1,c_25/0,c_26/5,c_27/8,c_28/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and#,f#,g#,gt#,h#,id#,if#,k#,m#,minus#,n#,not#,p#
            ,t#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {9}
        by application of
          Pre({9}) = {11}.
        Here rules are labelled as follows:
          1: f#(s(x)) -> c_4(h#(x))
          2: g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                     ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                     ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                 ,and#(f(s(x)),f(s(y)))
                                 ,f#(s(x))
                                 ,f#(s(y))
                                 ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                 ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                 ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                 ,minus#(m(x,y),n(x,y))
                                 ,m#(x,y)
                                 ,n#(x,y)
                                 ,k#(n(s(x),s(y)),s(s(0())))
                                 ,n#(s(x),s(y))
                                 ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                 ,minus#(m(x,y),n(x,y))
                                 ,m#(x,y)
                                 ,n#(x,y)
                                 ,n#(s(x),s(y)))
          3: gt#(s(x),s(y)) -> c_8(gt#(x,y))
          4: h#(s(x)) -> c_10(f#(x))
          5: k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
          6: m#(s(x),s(y)) -> c_18(m#(x,y))
          7: minus#(s(x),s(y)) -> c_20(minus#(x,y))
          8: n#(s(x),s(y)) -> c_23(n#(x,y))
          9: not#(x) -> c_24(if#(x,false(),true()))
          10: p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
          11: p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                   ,if#(gt(x,y),x,y)
                                   ,gt#(x,y)
                                   ,if#(not(gt(x,y)),id(x),id(y))
                                   ,not#(gt(x,y))
                                   ,gt#(x,y)
                                   ,id#(x)
                                   ,id#(y))
          12: t#(x) -> c_28(p#(x,x))
          13: and#(x,false()) -> c_1()
          14: and#(true(),true()) -> c_2()
          15: f#(0()) -> c_3()
          16: gt#(0(),y) -> c_6()
          17: gt#(s(x),0()) -> c_7()
          18: h#(0()) -> c_9()
          19: id#(x) -> c_11()
          20: if#(false(),x,y) -> c_12()
          21: if#(true(),x,y) -> c_13()
          22: k#(0(),s(y)) -> c_14()
          23: m#(x,0()) -> c_16()
          24: m#(0(),y) -> c_17()
          25: minus#(x,0()) -> c_19()
          26: n#(x,0()) -> c_21()
          27: n#(0(),y) -> c_22()
          28: p#(0(),y) -> c_25()
* Step 5: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_4(h#(x))
            g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                    ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                    ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                ,and#(f(s(x)),f(s(y)))
                                ,f#(s(x))
                                ,f#(s(y))
                                ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,k#(n(s(x),s(y)),s(s(0())))
                                ,n#(s(x),s(y))
                                ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,n#(s(x),s(y)))
            gt#(s(x),s(y)) -> c_8(gt#(x,y))
            h#(s(x)) -> c_10(f#(x))
            k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
            m#(s(x),s(y)) -> c_18(m#(x,y))
            minus#(s(x),s(y)) -> c_20(minus#(x,y))
            n#(s(x),s(y)) -> c_23(n#(x,y))
            p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
            p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                 ,if#(gt(x,y),x,y)
                                 ,gt#(x,y)
                                 ,if#(not(gt(x,y)),id(x),id(y))
                                 ,not#(gt(x,y))
                                 ,gt#(x,y)
                                 ,id#(x)
                                 ,id#(y))
            t#(x) -> c_28(p#(x,x))
        - Weak DPs:
            and#(x,false()) -> c_1()
            and#(true(),true()) -> c_2()
            f#(0()) -> c_3()
            gt#(0(),y) -> c_6()
            gt#(s(x),0()) -> c_7()
            h#(0()) -> c_9()
            id#(x) -> c_11()
            if#(false(),x,y) -> c_12()
            if#(true(),x,y) -> c_13()
            k#(0(),s(y)) -> c_14()
            m#(x,0()) -> c_16()
            m#(0(),y) -> c_17()
            minus#(x,0()) -> c_19()
            n#(x,0()) -> c_21()
            n#(0(),y) -> c_22()
            not#(x) -> c_24(if#(x,false(),true()))
            p#(0(),y) -> c_25()
        - Weak TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1,and#/2,f#/1,g#/2,gt#/2,h#/1,id#/1,if#/3
            ,k#/2,m#/2,minus#/2,n#/2,not#/1,p#/2,t#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/17,c_6/0
            ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0,c_17/0,c_18/1,c_19/0,c_20/1,c_21/0
            ,c_22/0,c_23/1,c_24/1,c_25/0,c_26/5,c_27/8,c_28/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and#,f#,g#,gt#,h#,id#,if#,k#,m#,minus#,n#,not#,p#
            ,t#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:f#(s(x)) -> c_4(h#(x))
             -->_1 h#(s(x)) -> c_10(f#(x)):4
             -->_1 h#(0()) -> c_9():17
          
          2:S:g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                      ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                      ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                  ,and#(f(s(x)),f(s(y)))
                                  ,f#(s(x))
                                  ,f#(s(y))
                                  ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                  ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                  ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                  ,minus#(m(x,y),n(x,y))
                                  ,m#(x,y)
                                  ,n#(x,y)
                                  ,k#(n(s(x),s(y)),s(s(0())))
                                  ,n#(s(x),s(y))
                                  ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                  ,minus#(m(x,y),n(x,y))
                                  ,m#(x,y)
                                  ,n#(x,y)
                                  ,n#(s(x),s(y)))
             -->_5 t#(x) -> c_28(p#(x,x)):11
             -->_17 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_16 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_12 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_10 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_14 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
             -->_8 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
             -->_15 m#(s(x),s(y)) -> c_18(m#(x,y)):6
             -->_9 m#(s(x),s(y)) -> c_18(m#(x,y)):6
             -->_11 k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y)):5
             -->_7 k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y)):5
             -->_16 n#(0(),y) -> c_22():26
             -->_10 n#(0(),y) -> c_22():26
             -->_16 n#(x,0()) -> c_21():25
             -->_10 n#(x,0()) -> c_21():25
             -->_14 minus#(x,0()) -> c_19():24
             -->_8 minus#(x,0()) -> c_19():24
             -->_15 m#(0(),y) -> c_17():23
             -->_9 m#(0(),y) -> c_17():23
             -->_15 m#(x,0()) -> c_16():22
             -->_9 m#(x,0()) -> c_16():22
             -->_11 k#(0(),s(y)) -> c_14():21
             -->_7 k#(0(),s(y)) -> c_14():21
             -->_1 if#(true(),x,y) -> c_13():20
             -->_1 if#(false(),x,y) -> c_12():19
             -->_2 and#(true(),true()) -> c_2():13
             -->_2 and#(x,false()) -> c_1():12
             -->_13 g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                            ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                            ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                        ,and#(f(s(x)),f(s(y)))
                                        ,f#(s(x))
                                        ,f#(s(y))
                                        ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                        ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                        ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                        ,minus#(m(x,y),n(x,y))
                                        ,m#(x,y)
                                        ,n#(x,y)
                                        ,k#(n(s(x),s(y)),s(s(0())))
                                        ,n#(s(x),s(y))
                                        ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                        ,minus#(m(x,y),n(x,y))
                                        ,m#(x,y)
                                        ,n#(x,y)
                                        ,n#(s(x),s(y))):2
             -->_6 g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                           ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                           ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                       ,and#(f(s(x)),f(s(y)))
                                       ,f#(s(x))
                                       ,f#(s(y))
                                       ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                       ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                       ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                       ,minus#(m(x,y),n(x,y))
                                       ,m#(x,y)
                                       ,n#(x,y)
                                       ,k#(n(s(x),s(y)),s(s(0())))
                                       ,n#(s(x),s(y))
                                       ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                       ,minus#(m(x,y),n(x,y))
                                       ,m#(x,y)
                                       ,n#(x,y)
                                       ,n#(s(x),s(y))):2
             -->_4 f#(s(x)) -> c_4(h#(x)):1
             -->_3 f#(s(x)) -> c_4(h#(x)):1
          
          3:S:gt#(s(x),s(y)) -> c_8(gt#(x,y))
             -->_1 gt#(s(x),0()) -> c_7():16
             -->_1 gt#(0(),y) -> c_6():15
             -->_1 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
          
          4:S:h#(s(x)) -> c_10(f#(x))
             -->_1 f#(0()) -> c_3():14
             -->_1 f#(s(x)) -> c_4(h#(x)):1
          
          5:S:k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
             -->_2 minus#(x,0()) -> c_19():24
             -->_1 k#(0(),s(y)) -> c_14():21
             -->_1 k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y)):5
          
          6:S:m#(s(x),s(y)) -> c_18(m#(x,y))
             -->_1 m#(0(),y) -> c_17():23
             -->_1 m#(x,0()) -> c_16():22
             -->_1 m#(s(x),s(y)) -> c_18(m#(x,y)):6
          
          7:S:minus#(s(x),s(y)) -> c_20(minus#(x,y))
             -->_1 minus#(x,0()) -> c_19():24
             -->_1 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
          
          8:S:n#(s(x),s(y)) -> c_23(n#(x,y))
             -->_1 n#(0(),y) -> c_22():26
             -->_1 n#(x,0()) -> c_21():25
             -->_1 n#(s(x),s(y)) -> c_23(n#(x,y)):8
          
          9:S:p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
             -->_1 p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                        ,if#(gt(x,y),x,y)
                                        ,gt#(x,y)
                                        ,if#(not(gt(x,y)),id(x),id(y))
                                        ,not#(gt(x,y))
                                        ,gt#(x,y)
                                        ,id#(x)
                                        ,id#(y)):10
             -->_1 p#(0(),y) -> c_25():28
             -->_2 if#(true(),x,y) -> c_13():20
             -->_2 if#(false(),x,y) -> c_12():19
             -->_5 id#(x) -> c_11():18
             -->_4 id#(x) -> c_11():18
             -->_3 gt#(0(),y) -> c_6():15
             -->_1 p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x))
                                     ,if#(gt(x,x),id(x),id(x))
                                     ,gt#(x,x)
                                     ,id#(x)
                                     ,id#(x)):9
             -->_3 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
          
          10:S:p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                    ,if#(gt(x,y),x,y)
                                    ,gt#(x,y)
                                    ,if#(not(gt(x,y)),id(x),id(y))
                                    ,not#(gt(x,y))
                                    ,gt#(x,y)
                                    ,id#(x)
                                    ,id#(y))
             -->_5 not#(x) -> c_24(if#(x,false(),true())):27
             -->_1 p#(0(),y) -> c_25():28
             -->_4 if#(true(),x,y) -> c_13():20
             -->_2 if#(true(),x,y) -> c_13():20
             -->_4 if#(false(),x,y) -> c_12():19
             -->_2 if#(false(),x,y) -> c_12():19
             -->_8 id#(x) -> c_11():18
             -->_7 id#(x) -> c_11():18
             -->_6 gt#(s(x),0()) -> c_7():16
             -->_3 gt#(s(x),0()) -> c_7():16
             -->_6 gt#(0(),y) -> c_6():15
             -->_3 gt#(0(),y) -> c_6():15
             -->_1 p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                        ,if#(gt(x,y),x,y)
                                        ,gt#(x,y)
                                        ,if#(not(gt(x,y)),id(x),id(y))
                                        ,not#(gt(x,y))
                                        ,gt#(x,y)
                                        ,id#(x)
                                        ,id#(y)):10
             -->_1 p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x))
                                     ,if#(gt(x,x),id(x),id(x))
                                     ,gt#(x,x)
                                     ,id#(x)
                                     ,id#(x)):9
             -->_6 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
             -->_3 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
          
          11:S:t#(x) -> c_28(p#(x,x))
             -->_1 p#(0(),y) -> c_25():28
             -->_1 p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                        ,if#(gt(x,y),x,y)
                                        ,gt#(x,y)
                                        ,if#(not(gt(x,y)),id(x),id(y))
                                        ,not#(gt(x,y))
                                        ,gt#(x,y)
                                        ,id#(x)
                                        ,id#(y)):10
          
          12:W:and#(x,false()) -> c_1()
             
          
          13:W:and#(true(),true()) -> c_2()
             
          
          14:W:f#(0()) -> c_3()
             
          
          15:W:gt#(0(),y) -> c_6()
             
          
          16:W:gt#(s(x),0()) -> c_7()
             
          
          17:W:h#(0()) -> c_9()
             
          
          18:W:id#(x) -> c_11()
             
          
          19:W:if#(false(),x,y) -> c_12()
             
          
          20:W:if#(true(),x,y) -> c_13()
             
          
          21:W:k#(0(),s(y)) -> c_14()
             
          
          22:W:m#(x,0()) -> c_16()
             
          
          23:W:m#(0(),y) -> c_17()
             
          
          24:W:minus#(x,0()) -> c_19()
             
          
          25:W:n#(x,0()) -> c_21()
             
          
          26:W:n#(0(),y) -> c_22()
             
          
          27:W:not#(x) -> c_24(if#(x,false(),true()))
             -->_1 if#(true(),x,y) -> c_13():20
             -->_1 if#(false(),x,y) -> c_12():19
          
          28:W:p#(0(),y) -> c_25()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          12: and#(x,false()) -> c_1()
          13: and#(true(),true()) -> c_2()
          21: k#(0(),s(y)) -> c_14()
          22: m#(x,0()) -> c_16()
          23: m#(0(),y) -> c_17()
          24: minus#(x,0()) -> c_19()
          25: n#(x,0()) -> c_21()
          26: n#(0(),y) -> c_22()
          15: gt#(0(),y) -> c_6()
          16: gt#(s(x),0()) -> c_7()
          18: id#(x) -> c_11()
          27: not#(x) -> c_24(if#(x,false(),true()))
          19: if#(false(),x,y) -> c_12()
          20: if#(true(),x,y) -> c_13()
          28: p#(0(),y) -> c_25()
          17: h#(0()) -> c_9()
          14: f#(0()) -> c_3()
* Step 6: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_4(h#(x))
            g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                    ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                    ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                ,and#(f(s(x)),f(s(y)))
                                ,f#(s(x))
                                ,f#(s(y))
                                ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,k#(n(s(x),s(y)),s(s(0())))
                                ,n#(s(x),s(y))
                                ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                ,minus#(m(x,y),n(x,y))
                                ,m#(x,y)
                                ,n#(x,y)
                                ,n#(s(x),s(y)))
            gt#(s(x),s(y)) -> c_8(gt#(x,y))
            h#(s(x)) -> c_10(f#(x))
            k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
            m#(s(x),s(y)) -> c_18(m#(x,y))
            minus#(s(x),s(y)) -> c_20(minus#(x,y))
            n#(s(x),s(y)) -> c_23(n#(x,y))
            p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
            p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                 ,if#(gt(x,y),x,y)
                                 ,gt#(x,y)
                                 ,if#(not(gt(x,y)),id(x),id(y))
                                 ,not#(gt(x,y))
                                 ,gt#(x,y)
                                 ,id#(x)
                                 ,id#(y))
            t#(x) -> c_28(p#(x,x))
        - Weak TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1,and#/2,f#/1,g#/2,gt#/2,h#/1,id#/1,if#/3
            ,k#/2,m#/2,minus#/2,n#/2,not#/1,p#/2,t#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/17,c_6/0
            ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0,c_17/0,c_18/1,c_19/0,c_20/1,c_21/0
            ,c_22/0,c_23/1,c_24/1,c_25/0,c_26/5,c_27/8,c_28/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and#,f#,g#,gt#,h#,id#,if#,k#,m#,minus#,n#,not#,p#
            ,t#} and constructors {0,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:f#(s(x)) -> c_4(h#(x))
             -->_1 h#(s(x)) -> c_10(f#(x)):4
          
          2:S:g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                      ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                      ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                  ,and#(f(s(x)),f(s(y)))
                                  ,f#(s(x))
                                  ,f#(s(y))
                                  ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                  ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                  ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                  ,minus#(m(x,y),n(x,y))
                                  ,m#(x,y)
                                  ,n#(x,y)
                                  ,k#(n(s(x),s(y)),s(s(0())))
                                  ,n#(s(x),s(y))
                                  ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                  ,minus#(m(x,y),n(x,y))
                                  ,m#(x,y)
                                  ,n#(x,y)
                                  ,n#(s(x),s(y)))
             -->_5 t#(x) -> c_28(p#(x,x)):11
             -->_17 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_16 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_12 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_10 n#(s(x),s(y)) -> c_23(n#(x,y)):8
             -->_14 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
             -->_8 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
             -->_15 m#(s(x),s(y)) -> c_18(m#(x,y)):6
             -->_9 m#(s(x),s(y)) -> c_18(m#(x,y)):6
             -->_11 k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y)):5
             -->_7 k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y)):5
             -->_13 g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                            ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                            ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                        ,and#(f(s(x)),f(s(y)))
                                        ,f#(s(x))
                                        ,f#(s(y))
                                        ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                        ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                        ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                        ,minus#(m(x,y),n(x,y))
                                        ,m#(x,y)
                                        ,n#(x,y)
                                        ,k#(n(s(x),s(y)),s(s(0())))
                                        ,n#(s(x),s(y))
                                        ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                        ,minus#(m(x,y),n(x,y))
                                        ,m#(x,y)
                                        ,n#(x,y)
                                        ,n#(s(x),s(y))):2
             -->_6 g#(s(x),s(y)) -> c_5(if#(and(f(s(x)),f(s(y)))
                                           ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                           ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
                                       ,and#(f(s(x)),f(s(y)))
                                       ,f#(s(x))
                                       ,f#(s(y))
                                       ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                                       ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                                       ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                                       ,minus#(m(x,y),n(x,y))
                                       ,m#(x,y)
                                       ,n#(x,y)
                                       ,k#(n(s(x),s(y)),s(s(0())))
                                       ,n#(s(x),s(y))
                                       ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                                       ,minus#(m(x,y),n(x,y))
                                       ,m#(x,y)
                                       ,n#(x,y)
                                       ,n#(s(x),s(y))):2
             -->_4 f#(s(x)) -> c_4(h#(x)):1
             -->_3 f#(s(x)) -> c_4(h#(x)):1
          
          3:S:gt#(s(x),s(y)) -> c_8(gt#(x,y))
             -->_1 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
          
          4:S:h#(s(x)) -> c_10(f#(x))
             -->_1 f#(s(x)) -> c_4(h#(x)):1
          
          5:S:k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
             -->_1 k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y)):5
          
          6:S:m#(s(x),s(y)) -> c_18(m#(x,y))
             -->_1 m#(s(x),s(y)) -> c_18(m#(x,y)):6
          
          7:S:minus#(s(x),s(y)) -> c_20(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_20(minus#(x,y)):7
          
          8:S:n#(s(x),s(y)) -> c_23(n#(x,y))
             -->_1 n#(s(x),s(y)) -> c_23(n#(x,y)):8
          
          9:S:p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),if#(gt(x,x),id(x),id(x)),gt#(x,x),id#(x),id#(x))
             -->_1 p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                        ,if#(gt(x,y),x,y)
                                        ,gt#(x,y)
                                        ,if#(not(gt(x,y)),id(x),id(y))
                                        ,not#(gt(x,y))
                                        ,gt#(x,y)
                                        ,id#(x)
                                        ,id#(y)):10
             -->_1 p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x))
                                     ,if#(gt(x,x),id(x),id(x))
                                     ,gt#(x,x)
                                     ,id#(x)
                                     ,id#(x)):9
             -->_3 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
          
          10:S:p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                    ,if#(gt(x,y),x,y)
                                    ,gt#(x,y)
                                    ,if#(not(gt(x,y)),id(x),id(y))
                                    ,not#(gt(x,y))
                                    ,gt#(x,y)
                                    ,id#(x)
                                    ,id#(y))
             -->_1 p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                        ,if#(gt(x,y),x,y)
                                        ,gt#(x,y)
                                        ,if#(not(gt(x,y)),id(x),id(y))
                                        ,not#(gt(x,y))
                                        ,gt#(x,y)
                                        ,id#(x)
                                        ,id#(y)):10
             -->_1 p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x))
                                     ,if#(gt(x,x),id(x),id(x))
                                     ,gt#(x,x)
                                     ,id#(x)
                                     ,id#(x)):9
             -->_6 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
             -->_3 gt#(s(x),s(y)) -> c_8(gt#(x,y)):3
          
          11:S:t#(x) -> c_28(p#(x,x))
             -->_1 p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))
                                        ,if#(gt(x,y),x,y)
                                        ,gt#(x,y)
                                        ,if#(not(gt(x,y)),id(x),id(y))
                                        ,not#(gt(x,y))
                                        ,gt#(x,y)
                                        ,id#(x)
                                        ,id#(y)):10
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          g#(s(x),s(y)) -> c_5(f#(s(x))
                              ,f#(s(y))
                              ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                              ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                              ,minus#(m(x,y),n(x,y))
                              ,m#(x,y)
                              ,n#(x,y)
                              ,k#(n(s(x),s(y)),s(s(0())))
                              ,n#(s(x),s(y))
                              ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                              ,minus#(m(x,y),n(x,y))
                              ,m#(x,y)
                              ,n#(x,y)
                              ,n#(s(x),s(y)))
          p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),gt#(x,x))
          p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))),gt#(x,y),gt#(x,y))
* Step 7: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          f#(s(x)) -> c_4(h#(x))
          g#(s(x),s(y)) -> c_5(f#(s(x))
                              ,f#(s(y))
                              ,t#(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g#(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0()))))
                              ,k#(minus(m(x,y),n(x,y)),s(s(0())))
                              ,minus#(m(x,y),n(x,y))
                              ,m#(x,y)
                              ,n#(x,y)
                              ,k#(n(s(x),s(y)),s(s(0())))
                              ,n#(s(x),s(y))
                              ,g#(minus(m(x,y),n(x,y)),n(s(x),s(y)))
                              ,minus#(m(x,y),n(x,y))
                              ,m#(x,y)
                              ,n#(x,y)
                              ,n#(s(x),s(y)))
          gt#(s(x),s(y)) -> c_8(gt#(x,y))
          h#(s(x)) -> c_10(f#(x))
          k#(s(x),s(y)) -> c_15(k#(minus(x,y),s(y)),minus#(x,y))
          m#(s(x),s(y)) -> c_18(m#(x,y))
          minus#(s(x),s(y)) -> c_20(minus#(x,y))
          n#(s(x),s(y)) -> c_23(n#(x,y))
          p#(s(x),x) -> c_26(p#(if(gt(x,x),id(x),id(x)),s(x)),gt#(x,x))
          p#(s(x),s(y)) -> c_27(p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))),gt#(x,y),gt#(x,y))
          t#(x) -> c_28(p#(x,x))
      - Weak TRS:
          and(x,false()) -> false()
          and(true(),true()) -> true()
          f(0()) -> true()
          f(s(x)) -> h(x)
          g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                            ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                            ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
          gt(0(),y) -> false()
          gt(s(x),0()) -> true()
          gt(s(x),s(y)) -> gt(x,y)
          h(0()) -> false()
          h(s(x)) -> f(x)
          id(x) -> x
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          k(0(),s(y)) -> 0()
          k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
          m(x,0()) -> x
          m(0(),y) -> y
          m(s(x),s(y)) -> s(m(x,y))
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          n(x,0()) -> 0()
          n(0(),y) -> 0()
          n(s(x),s(y)) -> s(n(x,y))
          not(x) -> if(x,false(),true())
          p(0(),y) -> y
          p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
          p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
          t(x) -> p(x,x)
      - Signature:
          {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1,and#/2,f#/1,g#/2,gt#/2,h#/1,id#/1,if#/3
          ,k#/2,m#/2,minus#/2,n#/2,not#/1,p#/2,t#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/15,c_6/0
          ,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0,c_17/0,c_18/1,c_19/0,c_20/1,c_21/0
          ,c_22/0,c_23/1,c_24/1,c_25/0,c_26/2,c_27/3,c_28/1}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {and#,f#,g#,gt#,h#,id#,if#,k#,m#,minus#,n#,not#,p#
          ,t#} and constructors {0,false,s,true}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE