WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            append(l1,l2) -> ifappend(l1,l2,l1)
            hd(cons(x,l)) -> x
            ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2))
            ifappend(l1,l2,nil()) -> l2
            is_empty(cons(x,l)) -> false()
            is_empty(nil()) -> true()
            tl(cons(x,l)) -> l
        - Signature:
            {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,hd,ifappend,is_empty,tl} and constructors {cons
            ,false,nil,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2}
        
        Following symbols are considered usable:
          {append,hd,ifappend,is_empty,tl}
        TcT has computed the following interpretation:
            p(append) = [2] x1 + [1] x2 + [0]
              p(cons) = [1] x1 + [1] x2 + [0]
             p(false) = [5]                  
                p(hd) = [1] x1 + [4]         
          p(ifappend) = [1] x2 + [2] x3 + [0]
          p(is_empty) = [2] x1 + [9]         
               p(nil) = [5]                  
                p(tl) = [4] x1 + [5]         
              p(true) = [1]                  
        
        Following rules are strictly oriented:
                hd(cons(x,l)) = [1] l + [1] x + [4]
                              > [1] x + [0]        
                              = x                  
        
        ifappend(l1,l2,nil()) = [1] l2 + [10]      
                              > [1] l2 + [0]       
                              = l2                 
        
          is_empty(cons(x,l)) = [2] l + [2] x + [9]
                              > [5]                
                              = false()            
        
              is_empty(nil()) = [19]               
                              > [1]                
                              = true()             
        
                tl(cons(x,l)) = [4] l + [4] x + [5]
                              > [1] l + [0]        
                              = l                  
        
        
        Following rules are (at-least) weakly oriented:
                    append(l1,l2) =  [2] l1 + [1] l2 + [0]       
                                  >= [2] l1 + [1] l2 + [0]       
                                  =  ifappend(l1,l2,l1)          
        
        ifappend(l1,l2,cons(x,l)) =  [2] l + [1] l2 + [2] x + [0]
                                  >= [2] l + [1] l2 + [1] x + [0]
                                  =  cons(x,append(l,l2))        
        
* Step 2: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            append(l1,l2) -> ifappend(l1,l2,l1)
            ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2))
        - Weak TRS:
            hd(cons(x,l)) -> x
            ifappend(l1,l2,nil()) -> l2
            is_empty(cons(x,l)) -> false()
            is_empty(nil()) -> true()
            tl(cons(x,l)) -> l
        - Signature:
            {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,hd,ifappend,is_empty,tl} and constructors {cons
            ,false,nil,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2}
        
        Following symbols are considered usable:
          {append,hd,ifappend,is_empty,tl}
        TcT has computed the following interpretation:
            p(append) = [2] x1 + [2] x2 + [1]
              p(cons) = [1] x1 + [1] x2 + [8]
             p(false) = [0]                  
                p(hd) = [1] x1 + [0]         
          p(ifappend) = [2] x2 + [2] x3 + [1]
          p(is_empty) = [0]                  
               p(nil) = [5]                  
                p(tl) = [1] x1 + [8]         
              p(true) = [0]                  
        
        Following rules are strictly oriented:
        ifappend(l1,l2,cons(x,l)) = [2] l + [2] l2 + [2] x + [17]
                                  > [2] l + [2] l2 + [1] x + [9] 
                                  = cons(x,append(l,l2))         
        
        
        Following rules are (at-least) weakly oriented:
                append(l1,l2) =  [2] l1 + [2] l2 + [1]
                              >= [2] l1 + [2] l2 + [1]
                              =  ifappend(l1,l2,l1)   
        
                hd(cons(x,l)) =  [1] l + [1] x + [8]  
                              >= [1] x + [0]          
                              =  x                    
        
        ifappend(l1,l2,nil()) =  [2] l2 + [11]        
                              >= [1] l2 + [0]         
                              =  l2                   
        
          is_empty(cons(x,l)) =  [0]                  
                              >= [0]                  
                              =  false()              
        
              is_empty(nil()) =  [0]                  
                              >= [0]                  
                              =  true()               
        
                tl(cons(x,l)) =  [1] l + [1] x + [16] 
                              >= [1] l + [0]          
                              =  l                    
        
* Step 3: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            append(l1,l2) -> ifappend(l1,l2,l1)
        - Weak TRS:
            hd(cons(x,l)) -> x
            ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2))
            ifappend(l1,l2,nil()) -> l2
            is_empty(cons(x,l)) -> false()
            is_empty(nil()) -> true()
            tl(cons(x,l)) -> l
        - Signature:
            {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,hd,ifappend,is_empty,tl} and constructors {cons
            ,false,nil,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2}
        
        Following symbols are considered usable:
          {append,hd,ifappend,is_empty,tl}
        TcT has computed the following interpretation:
            p(append) = [8] x1 + [1] x2 + [7]
              p(cons) = [1] x1 + [1] x2 + [1]
             p(false) = [0]                  
                p(hd) = [14] x1 + [0]        
          p(ifappend) = [1] x2 + [8] x3 + [5]
          p(is_empty) = [1] x1 + [15]        
               p(nil) = [1]                  
                p(tl) = [5] x1 + [7]         
              p(true) = [0]                  
        
        Following rules are strictly oriented:
        append(l1,l2) = [8] l1 + [1] l2 + [7]
                      > [8] l1 + [1] l2 + [5]
                      = ifappend(l1,l2,l1)   
        
        
        Following rules are (at-least) weakly oriented:
                    hd(cons(x,l)) =  [14] l + [14] x + [14]       
                                  >= [1] x + [0]                  
                                  =  x                            
        
        ifappend(l1,l2,cons(x,l)) =  [8] l + [1] l2 + [8] x + [13]
                                  >= [8] l + [1] l2 + [1] x + [8] 
                                  =  cons(x,append(l,l2))         
        
            ifappend(l1,l2,nil()) =  [1] l2 + [13]                
                                  >= [1] l2 + [0]                 
                                  =  l2                           
        
              is_empty(cons(x,l)) =  [1] l + [1] x + [16]         
                                  >= [0]                          
                                  =  false()                      
        
                  is_empty(nil()) =  [16]                         
                                  >= [0]                          
                                  =  true()                       
        
                    tl(cons(x,l)) =  [5] l + [5] x + [12]         
                                  >= [1] l + [0]                  
                                  =  l                            
        
* Step 4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            append(l1,l2) -> ifappend(l1,l2,l1)
            hd(cons(x,l)) -> x
            ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2))
            ifappend(l1,l2,nil()) -> l2
            is_empty(cons(x,l)) -> false()
            is_empty(nil()) -> true()
            tl(cons(x,l)) -> l
        - Signature:
            {append/2,hd/1,ifappend/3,is_empty/1,tl/1} / {cons/2,false/0,nil/0,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,hd,ifappend,is_empty,tl} and constructors {cons
            ,false,nil,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))