WORST_CASE(?,O(n^1)) * Step 1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: { [0] = ordered(xs) Following rules are (at-least) weakly oriented: <(x,0()) = [0] >= [0] = False() <(0(),S(y)) = [0] >= [0] = True() <(S(x),S(y)) = [0] >= [0] = <(x,y) notEmpty(Cons(x,xs)) = [0] >= [0] = True() notEmpty(Nil()) = [0] >= [0] = False() ordered(Cons(x,Nil())) = [0] >= [0] = True() ordered(Cons(x',Cons(x,xs))) = [0] >= [0] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) = [0] >= [0] = True() ordered[Ite](False(),xs) = [0] >= [0] = False() ordered[Ite](True(),Cons(x',Cons(x,xs))) = [0] >= [0] = ordered(xs) * Step 2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: { [0] = True() notEmpty(Nil()) = [6] > [0] = False() ordered(Cons(x,Nil())) = [9] > [0] = True() ordered(Nil()) = [9] > [0] = True() Following rules are (at-least) weakly oriented: <(x,0()) = [0] >= [0] = False() <(0(),S(y)) = [0] >= [0] = True() <(S(x),S(y)) = [0] >= [0] = <(x,y) goal(xs) = [9] >= [9] = ordered(xs) ordered(Cons(x',Cons(x,xs))) = [9] >= [9] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered[Ite](False(),xs) = [3] xs + [0] >= [0] = False() ordered[Ite](True(),Cons(x',Cons(x,xs))) = [9] >= [9] = ordered(xs) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Nil()) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: { [2] x + [2] x' + [2] xs + [30] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) Following rules are (at-least) weakly oriented: <(x,0()) = [1] >= [0] = False() <(0(),S(y)) = [1] >= [0] = True() <(S(x),S(y)) = [1] >= [1] = <(x,y) goal(xs) = [3] xs + [3] >= [2] xs + [3] = ordered(xs) notEmpty(Cons(x,xs)) = [4] x + [4] xs + [28] >= [0] = True() notEmpty(Nil()) = [4] >= [0] = False() ordered(Cons(x,Nil())) = [2] x + [19] >= [0] = True() ordered(Nil()) = [5] >= [0] = True() ordered[Ite](False(),xs) = [2] xs + [1] >= [0] = False() ordered[Ite](True(),Cons(x',Cons(x,xs))) = [2] x + [2] x' + [2] xs + [29] >= [2] xs + [3] = ordered(xs) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: {