WORST_CASE(?,O(n^2))
* Step 1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(and) = {1,2},
          uargs(domatch[Ite]) = {1},
          uargs(eqNatList[Ite]) = {1}
        
        Following symbols are considered usable:
          {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite],notEmpty,prefix,strmatch}
        TcT has computed the following interpretation:
                     p(!EQ) = [0]                  
                       p(0) = [4]                  
                    p(Cons) = [1] x2 + [0]         
                   p(False) = [0]                  
                     p(Nil) = [0]                  
                       p(S) = [1]                  
                    p(True) = [0]                  
                     p(and) = [4] x1 + [4] x2 + [0]
                 p(domatch) = [0]                  
            p(domatch[Ite]) = [4] x1 + [0]         
               p(eqNatList) = [2]                  
          p(eqNatList[Ite]) = [2] x1 + [2]         
                p(notEmpty) = [3]                  
                  p(prefix) = [0]                  
                p(strmatch) = [0]                  
        
        Following rules are strictly oriented:
        eqNatList(Cons(x,xs),Nil()) = [2]    
                                    > [0]    
                                    = False()
        
        eqNatList(Nil(),Cons(y,ys)) = [2]    
                                    > [0]    
                                    = False()
        
             eqNatList(Nil(),Nil()) = [2]    
                                    > [0]    
                                    = True() 
        
               notEmpty(Cons(x,xs)) = [3]    
                                    > [0]    
                                    = True() 
        
                    notEmpty(Nil()) = [3]    
                                    > [0]    
                                    = False()
        
        
        Following rules are (at-least) weakly oriented:
                                    !EQ(0(),0()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
                                   !EQ(0(),S(y)) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                                   !EQ(S(x),0()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                                  !EQ(S(x),S(y)) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  !EQ(x,y)                                                 
        
                            and(False(),False()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                             and(False(),True()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                             and(True(),False()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                              and(True(),True()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
                     domatch(patcs,Cons(x,xs),n) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
        
                     domatch(Cons(x,xs),Nil(),n) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  Nil()                                                    
        
                          domatch(Nil(),Nil(),n) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  Cons(n,Nil())                                            
        
        domatch[Ite](False(),patcs,Cons(x,xs),n) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
        
         domatch[Ite](True(),patcs,Cons(x,xs),n) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))      
        
                eqNatList(Cons(x,xs),Cons(y,ys)) =  [2]                                                      
                                                 >= [2]                                                      
                                                 =  eqNatList[Ite](!EQ(x,y),y,ys,x,xs)                       
        
               eqNatList[Ite](False(),y,ys,x,xs) =  [2]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                eqNatList[Ite](True(),y,ys,x,xs) =  [2]                                                      
                                                 >= [2]                                                      
                                                 =  eqNatList(xs,ys)                                         
        
                        prefix(Cons(x,xs),Nil()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                 prefix(Cons(x',xs'),Cons(x,xs)) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  and(!EQ(x',x),prefix(xs',xs))                            
        
                                prefix(Nil(),cs) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
                            strmatch(patstr,str) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  domatch(patstr,str,Nil())                                
        
* Step 2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(Cons) = {2},
            uargs(and) = {1,2},
            uargs(domatch[Ite]) = {1},
            uargs(eqNatList[Ite]) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(!EQ) = [3]                           
                         p(0) = [0]                           
                      p(Cons) = [1] x2 + [1]                  
                     p(False) = [0]                           
                       p(Nil) = [0]                           
                         p(S) = [1] x1 + [0]                  
                      p(True) = [1]                           
                       p(and) = [1] x1 + [1] x2 + [0]         
                   p(domatch) = [3] x2 + [2] x3 + [0]         
              p(domatch[Ite]) = [1] x1 + [3] x3 + [1]         
                 p(eqNatList) = [3] x1 + [6] x2 + [1]         
            p(eqNatList[Ite]) = [1] x1 + [6] x3 + [3] x5 + [4]
                  p(notEmpty) = [2] x1 + [0]                  
                    p(prefix) = [0]                           
                  p(strmatch) = [2] x1 + [4] x2 + [1]         
          
          Following rules are strictly oriented:
          eqNatList(Cons(x,xs),Cons(y,ys)) = [3] xs + [6] ys + [10]            
                                           > [3] xs + [6] ys + [7]             
                                           = eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
          
                      strmatch(patstr,str) = [2] patstr + [4] str + [1]        
                                           > [3] str + [0]                     
                                           = domatch(patstr,str,Nil())         
          
          
          Following rules are (at-least) weakly oriented:
                                      !EQ(0(),0()) =  [3]                                                      
                                                   >= [1]                                                      
                                                   =  True()                                                   
          
                                     !EQ(0(),S(y)) =  [3]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                                     !EQ(S(x),0()) =  [3]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                                    !EQ(S(x),S(y)) =  [3]                                                      
                                                   >= [3]                                                      
                                                   =  !EQ(x,y)                                                 
          
                              and(False(),False()) =  [0]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                               and(False(),True()) =  [1]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                               and(True(),False()) =  [1]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                                and(True(),True()) =  [2]                                                      
                                                   >= [1]                                                      
                                                   =  True()                                                   
          
                       domatch(patcs,Cons(x,xs),n) =  [2] n + [3] xs + [3]                                     
                                                   >= [3] xs + [4]                                             
                                                   =  domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
          
                       domatch(Cons(x,xs),Nil(),n) =  [2] n + [0]                                              
                                                   >= [0]                                                      
                                                   =  Nil()                                                    
          
                            domatch(Nil(),Nil(),n) =  [2] n + [0]                                              
                                                   >= [1]                                                      
                                                   =  Cons(n,Nil())                                            
          
          domatch[Ite](False(),patcs,Cons(x,xs),n) =  [3] xs + [4]                                             
                                                   >= [3] xs + [4]                                             
                                                   =  domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
          
           domatch[Ite](True(),patcs,Cons(x,xs),n) =  [3] xs + [5]                                             
                                                   >= [3] xs + [5]                                             
                                                   =  Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))      
          
                       eqNatList(Cons(x,xs),Nil()) =  [3] xs + [4]                                             
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                       eqNatList(Nil(),Cons(y,ys)) =  [6] ys + [7]                                             
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                            eqNatList(Nil(),Nil()) =  [1]                                                      
                                                   >= [1]                                                      
                                                   =  True()                                                   
          
                 eqNatList[Ite](False(),y,ys,x,xs) =  [3] xs + [6] ys + [4]                                    
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                  eqNatList[Ite](True(),y,ys,x,xs) =  [3] xs + [6] ys + [5]                                    
                                                   >= [3] xs + [6] ys + [1]                                    
                                                   =  eqNatList(xs,ys)                                         
          
                              notEmpty(Cons(x,xs)) =  [2] xs + [2]                                             
                                                   >= [1]                                                      
                                                   =  True()                                                   
          
                                   notEmpty(Nil()) =  [0]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                          prefix(Cons(x,xs),Nil()) =  [0]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                   prefix(Cons(x',xs'),Cons(x,xs)) =  [0]                                                      
                                                   >= [3]                                                      
                                                   =  and(!EQ(x',x),prefix(xs',xs))                            
          
                                  prefix(Nil(),cs) =  [0]                                                      
                                                   >= [1]                                                      
                                                   =  True()                                                   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(Cons) = {2},
            uargs(and) = {1,2},
            uargs(domatch[Ite]) = {1},
            uargs(eqNatList[Ite]) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(!EQ) = [3]                  
                         p(0) = [4]                  
                      p(Cons) = [1] x2 + [4]         
                     p(False) = [3]                  
                       p(Nil) = [2]                  
                         p(S) = [0]                  
                      p(True) = [0]                  
                       p(and) = [1] x1 + [1] x2 + [6]
                   p(domatch) = [0]                  
              p(domatch[Ite]) = [1] x1 + [4]         
                 p(eqNatList) = [1] x2 + [2]         
            p(eqNatList[Ite]) = [1] x1 + [1] x3 + [2]
                  p(notEmpty) = [3] x1 + [0]         
                    p(prefix) = [2]                  
                  p(strmatch) = [4] x1 + [2] x2 + [0]
          
          Following rules are strictly oriented:
          prefix(Nil(),cs) = [2]   
                           > [0]   
                           = True()
          
          
          Following rules are (at-least) weakly oriented:
                                      !EQ(0(),0()) =  [3]                                                      
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                                     !EQ(0(),S(y)) =  [3]                                                      
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                                     !EQ(S(x),0()) =  [3]                                                      
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                                    !EQ(S(x),S(y)) =  [3]                                                      
                                                   >= [3]                                                      
                                                   =  !EQ(x,y)                                                 
          
                              and(False(),False()) =  [12]                                                     
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                               and(False(),True()) =  [9]                                                      
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                               and(True(),False()) =  [9]                                                      
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                                and(True(),True()) =  [6]                                                      
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                       domatch(patcs,Cons(x,xs),n) =  [0]                                                      
                                                   >= [6]                                                      
                                                   =  domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
          
                       domatch(Cons(x,xs),Nil(),n) =  [0]                                                      
                                                   >= [2]                                                      
                                                   =  Nil()                                                    
          
                            domatch(Nil(),Nil(),n) =  [0]                                                      
                                                   >= [6]                                                      
                                                   =  Cons(n,Nil())                                            
          
          domatch[Ite](False(),patcs,Cons(x,xs),n) =  [7]                                                      
                                                   >= [0]                                                      
                                                   =  domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
          
           domatch[Ite](True(),patcs,Cons(x,xs),n) =  [4]                                                      
                                                   >= [4]                                                      
                                                   =  Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))      
          
                  eqNatList(Cons(x,xs),Cons(y,ys)) =  [1] ys + [6]                                             
                                                   >= [1] ys + [5]                                             
                                                   =  eqNatList[Ite](!EQ(x,y),y,ys,x,xs)                       
          
                       eqNatList(Cons(x,xs),Nil()) =  [4]                                                      
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                       eqNatList(Nil(),Cons(y,ys)) =  [1] ys + [6]                                             
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                            eqNatList(Nil(),Nil()) =  [4]                                                      
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                 eqNatList[Ite](False(),y,ys,x,xs) =  [1] ys + [5]                                             
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                  eqNatList[Ite](True(),y,ys,x,xs) =  [1] ys + [2]                                             
                                                   >= [1] ys + [2]                                             
                                                   =  eqNatList(xs,ys)                                         
          
                              notEmpty(Cons(x,xs)) =  [3] xs + [12]                                            
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                                   notEmpty(Nil()) =  [6]                                                      
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                          prefix(Cons(x,xs),Nil()) =  [2]                                                      
                                                   >= [3]                                                      
                                                   =  False()                                                  
          
                   prefix(Cons(x',xs'),Cons(x,xs)) =  [2]                                                      
                                                   >= [11]                                                     
                                                   =  and(!EQ(x',x),prefix(xs',xs))                            
          
                              strmatch(patstr,str) =  [4] patstr + [2] str + [0]                               
                                                   >= [0]                                                      
                                                   =  domatch(patstr,str,Nil())                                
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(and) = {1,2},
          uargs(domatch[Ite]) = {1},
          uargs(eqNatList[Ite]) = {1}
        
        Following symbols are considered usable:
          {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite],notEmpty,prefix,strmatch}
        TcT has computed the following interpretation:
                     p(!EQ) = [0]                           
                       p(0) = [0]                           
                    p(Cons) = [1] x2 + [0]                  
                   p(False) = [0]                           
                     p(Nil) = [0]                           
                       p(S) = [1] x1 + [0]                  
                    p(True) = [0]                           
                     p(and) = [4] x1 + [4] x2 + [0]         
                 p(domatch) = [2]                           
            p(domatch[Ite]) = [4] x1 + [2]                  
               p(eqNatList) = [4] x1 + [1] x2 + [0]         
          p(eqNatList[Ite]) = [1] x1 + [1] x3 + [4] x5 + [0]
                p(notEmpty) = [4] x1 + [0]                  
                  p(prefix) = [0]                           
                p(strmatch) = [4] x1 + [4] x2 + [2]         
        
        Following rules are strictly oriented:
        domatch(Cons(x,xs),Nil(),n) = [2]          
                                    > [0]          
                                    = Nil()        
        
             domatch(Nil(),Nil(),n) = [2]          
                                    > [0]          
                                    = Cons(n,Nil())
        
        
        Following rules are (at-least) weakly oriented:
                                    !EQ(0(),0()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
                                   !EQ(0(),S(y)) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                                   !EQ(S(x),0()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                                  !EQ(S(x),S(y)) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  !EQ(x,y)                                                 
        
                            and(False(),False()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                             and(False(),True()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                             and(True(),False()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                              and(True(),True()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
                     domatch(patcs,Cons(x,xs),n) =  [2]                                                      
                                                 >= [2]                                                      
                                                 =  domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
        
        domatch[Ite](False(),patcs,Cons(x,xs),n) =  [2]                                                      
                                                 >= [2]                                                      
                                                 =  domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
        
         domatch[Ite](True(),patcs,Cons(x,xs),n) =  [2]                                                      
                                                 >= [2]                                                      
                                                 =  Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))      
        
                eqNatList(Cons(x,xs),Cons(y,ys)) =  [4] xs + [1] ys + [0]                                    
                                                 >= [4] xs + [1] ys + [0]                                    
                                                 =  eqNatList[Ite](!EQ(x,y),y,ys,x,xs)                       
        
                     eqNatList(Cons(x,xs),Nil()) =  [4] xs + [0]                                             
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                     eqNatList(Nil(),Cons(y,ys)) =  [1] ys + [0]                                             
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                          eqNatList(Nil(),Nil()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
               eqNatList[Ite](False(),y,ys,x,xs) =  [4] xs + [1] ys + [0]                                    
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                eqNatList[Ite](True(),y,ys,x,xs) =  [4] xs + [1] ys + [0]                                    
                                                 >= [4] xs + [1] ys + [0]                                    
                                                 =  eqNatList(xs,ys)                                         
        
                            notEmpty(Cons(x,xs)) =  [4] xs + [0]                                             
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
                                 notEmpty(Nil()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                        prefix(Cons(x,xs),Nil()) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  False()                                                  
        
                 prefix(Cons(x',xs'),Cons(x,xs)) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  and(!EQ(x',x),prefix(xs',xs))                            
        
                                prefix(Nil(),cs) =  [0]                                                      
                                                 >= [0]                                                      
                                                 =  True()                                                   
        
                            strmatch(patstr,str) =  [4] patstr + [4] str + [2]                               
                                                 >= [2]                                                      
                                                 =  domatch(patstr,str,Nil())                                
        
* Step 5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(Cons) = {2},
            uargs(and) = {1,2},
            uargs(domatch[Ite]) = {1},
            uargs(eqNatList[Ite]) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(!EQ) = [0]                  
                         p(0) = [4]                  
                      p(Cons) = [1] x2 + [0]         
                     p(False) = [0]                  
                       p(Nil) = [2]                  
                         p(S) = [0]                  
                      p(True) = [0]                  
                       p(and) = [1] x1 + [1] x2 + [4]
                   p(domatch) = [1] x3 + [4]         
              p(domatch[Ite]) = [1] x1 + [6]         
                 p(eqNatList) = [1] x2 + [0]         
            p(eqNatList[Ite]) = [1] x1 + [1] x3 + [0]
                  p(notEmpty) = [4] x1 + [4]         
                    p(prefix) = [2]                  
                  p(strmatch) = [1] x1 + [1] x2 + [7]
          
          Following rules are strictly oriented:
          prefix(Cons(x,xs),Nil()) = [2]    
                                   > [0]    
                                   = False()
          
          
          Following rules are (at-least) weakly oriented:
                                      !EQ(0(),0()) =  [0]                                                      
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                                     !EQ(0(),S(y)) =  [0]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                                     !EQ(S(x),0()) =  [0]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                                    !EQ(S(x),S(y)) =  [0]                                                      
                                                   >= [0]                                                      
                                                   =  !EQ(x,y)                                                 
          
                              and(False(),False()) =  [4]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                               and(False(),True()) =  [4]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                               and(True(),False()) =  [4]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                                and(True(),True()) =  [4]                                                      
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                       domatch(patcs,Cons(x,xs),n) =  [1] n + [4]                                              
                                                   >= [8]                                                      
                                                   =  domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
          
                       domatch(Cons(x,xs),Nil(),n) =  [1] n + [4]                                              
                                                   >= [2]                                                      
                                                   =  Nil()                                                    
          
                            domatch(Nil(),Nil(),n) =  [1] n + [4]                                              
                                                   >= [2]                                                      
                                                   =  Cons(n,Nil())                                            
          
          domatch[Ite](False(),patcs,Cons(x,xs),n) =  [6]                                                      
                                                   >= [6]                                                      
                                                   =  domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
          
           domatch[Ite](True(),patcs,Cons(x,xs),n) =  [6]                                                      
                                                   >= [6]                                                      
                                                   =  Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))      
          
                  eqNatList(Cons(x,xs),Cons(y,ys)) =  [1] ys + [0]                                             
                                                   >= [1] ys + [0]                                             
                                                   =  eqNatList[Ite](!EQ(x,y),y,ys,x,xs)                       
          
                       eqNatList(Cons(x,xs),Nil()) =  [2]                                                      
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                       eqNatList(Nil(),Cons(y,ys)) =  [1] ys + [0]                                             
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                            eqNatList(Nil(),Nil()) =  [2]                                                      
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                 eqNatList[Ite](False(),y,ys,x,xs) =  [1] ys + [0]                                             
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                  eqNatList[Ite](True(),y,ys,x,xs) =  [1] ys + [0]                                             
                                                   >= [1] ys + [0]                                             
                                                   =  eqNatList(xs,ys)                                         
          
                              notEmpty(Cons(x,xs)) =  [4] xs + [4]                                             
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                                   notEmpty(Nil()) =  [12]                                                     
                                                   >= [0]                                                      
                                                   =  False()                                                  
          
                   prefix(Cons(x',xs'),Cons(x,xs)) =  [2]                                                      
                                                   >= [6]                                                      
                                                   =  and(!EQ(x',x),prefix(xs',xs))                            
          
                                  prefix(Nil(),cs) =  [2]                                                      
                                                   >= [0]                                                      
                                                   =  True()                                                   
          
                              strmatch(patstr,str) =  [1] patstr + [1] str + [7]                               
                                                   >= [6]                                                      
                                                   =  domatch(patstr,str,Nil())                                
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(and) = {1,2},
          uargs(domatch[Ite]) = {1},
          uargs(eqNatList[Ite]) = {1}
        
        Following symbols are considered usable:
          {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite],notEmpty,prefix,strmatch}
        TcT has computed the following interpretation:
                     p(!EQ) = [0]                  
                       p(0) = [0]                  
                    p(Cons) = [1] x2 + [4]         
                   p(False) = [0]                  
                     p(Nil) = [2]                  
                       p(S) = [4]                  
                    p(True) = [0]                  
                     p(and) = [4] x1 + [4] x2 + [0]
                 p(domatch) = [2] x2 + [3]         
            p(domatch[Ite]) = [4] x1 + [2] x3 + [0]
               p(eqNatList) = [3]                  
          p(eqNatList[Ite]) = [4] x1 + [3]         
                p(notEmpty) = [2]                  
                  p(prefix) = [0]                  
                p(strmatch) = [2] x2 + [4]         
        
        Following rules are strictly oriented:
        domatch(patcs,Cons(x,xs),n) = [2] xs + [11]                                            
                                    > [2] xs + [8]                                             
                                    = domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
        
        
        Following rules are (at-least) weakly oriented:
                                    !EQ(0(),0()) =  [0]                                                
                                                 >= [0]                                                
                                                 =  True()                                             
        
                                   !EQ(0(),S(y)) =  [0]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                                   !EQ(S(x),0()) =  [0]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                                  !EQ(S(x),S(y)) =  [0]                                                
                                                 >= [0]                                                
                                                 =  !EQ(x,y)                                           
        
                            and(False(),False()) =  [0]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                             and(False(),True()) =  [0]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                             and(True(),False()) =  [0]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                              and(True(),True()) =  [0]                                                
                                                 >= [0]                                                
                                                 =  True()                                             
        
                     domatch(Cons(x,xs),Nil(),n) =  [7]                                                
                                                 >= [2]                                                
                                                 =  Nil()                                              
        
                          domatch(Nil(),Nil(),n) =  [7]                                                
                                                 >= [6]                                                
                                                 =  Cons(n,Nil())                                      
        
        domatch[Ite](False(),patcs,Cons(x,xs),n) =  [2] xs + [8]                                       
                                                 >= [2] xs + [3]                                       
                                                 =  domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))        
        
         domatch[Ite](True(),patcs,Cons(x,xs),n) =  [2] xs + [8]                                       
                                                 >= [2] xs + [7]                                       
                                                 =  Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
        
                eqNatList(Cons(x,xs),Cons(y,ys)) =  [3]                                                
                                                 >= [3]                                                
                                                 =  eqNatList[Ite](!EQ(x,y),y,ys,x,xs)                 
        
                     eqNatList(Cons(x,xs),Nil()) =  [3]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                     eqNatList(Nil(),Cons(y,ys)) =  [3]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                          eqNatList(Nil(),Nil()) =  [3]                                                
                                                 >= [0]                                                
                                                 =  True()                                             
        
               eqNatList[Ite](False(),y,ys,x,xs) =  [3]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                eqNatList[Ite](True(),y,ys,x,xs) =  [3]                                                
                                                 >= [3]                                                
                                                 =  eqNatList(xs,ys)                                   
        
                            notEmpty(Cons(x,xs)) =  [2]                                                
                                                 >= [0]                                                
                                                 =  True()                                             
        
                                 notEmpty(Nil()) =  [2]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                        prefix(Cons(x,xs),Nil()) =  [0]                                                
                                                 >= [0]                                                
                                                 =  False()                                            
        
                 prefix(Cons(x',xs'),Cons(x,xs)) =  [0]                                                
                                                 >= [0]                                                
                                                 =  and(!EQ(x',x),prefix(xs',xs))                      
        
                                prefix(Nil(),cs) =  [0]                                                
                                                 >= [0]                                                
                                                 =  True()                                             
        
                            strmatch(patstr,str) =  [2] str + [4]                                      
                                                 >= [2] str + [3]                                      
                                                 =  domatch(patstr,str,Nil())                          
        
* Step 7: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(and) = {1,2},
          uargs(domatch[Ite]) = {1},
          uargs(eqNatList[Ite]) = {1}
        
        Following symbols are considered usable:
          {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite],notEmpty,prefix,strmatch}
        TcT has computed the following interpretation:
                     p(!EQ) = [0]                                 
                              [2]                                 
                       p(0) = [0]                                 
                              [4]                                 
                    p(Cons) = [1 1] x2 + [0]                      
                              [0 1]      [4]                      
                   p(False) = [0]                                 
                              [0]                                 
                     p(Nil) = [0]                                 
                              [4]                                 
                       p(S) = [0 1] x1 + [0]                      
                              [0 1]      [0]                      
                    p(True) = [0]                                 
                              [1]                                 
                     p(and) = [2 0] x1 + [1 0] x2 + [0]           
                              [0 0]      [0 1]      [0]           
                 p(domatch) = [4 2] x2 + [4]                      
                              [0 1]      [4]                      
            p(domatch[Ite]) = [1 4] x1 + [4 1] x3 + [0]           
                              [0 1]      [0 1]      [3]           
               p(eqNatList) = [5 2] x1 + [0 0] x2 + [3]           
                              [0 0]      [0 1]      [1]           
          p(eqNatList[Ite]) = [2 1] x1 + [0 0] x3 + [5 2] x5 + [2]
                              [0 0]      [0 1]      [0 0]      [5]
                p(notEmpty) = [0 0] x1 + [0]                      
                              [1 1]      [0]                      
                  p(prefix) = [0 1] x2 + [0]                      
                              [0 0]      [1]                      
                p(strmatch) = [0 0] x1 + [4 3] x2 + [4]           
                              [0 4]      [1 1]      [4]           
        
        Following rules are strictly oriented:
        prefix(Cons(x',xs'),Cons(x,xs)) = [0 1] xs + [4]               
                                          [0 0]      [1]               
                                        > [0 1] xs + [0]               
                                          [0 0]      [1]               
                                        = and(!EQ(x',x),prefix(xs',xs))
        
        
        Following rules are (at-least) weakly oriented:
                                    !EQ(0(),0()) =  [0]                                                      
                                                    [2]                                                      
                                                 >= [0]                                                      
                                                    [1]                                                      
                                                 =  True()                                                   
        
                                   !EQ(0(),S(y)) =  [0]                                                      
                                                    [2]                                                      
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                                   !EQ(S(x),0()) =  [0]                                                      
                                                    [2]                                                      
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                                  !EQ(S(x),S(y)) =  [0]                                                      
                                                    [2]                                                      
                                                 >= [0]                                                      
                                                    [2]                                                      
                                                 =  !EQ(x,y)                                                 
        
                            and(False(),False()) =  [0]                                                      
                                                    [0]                                                      
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                             and(False(),True()) =  [0]                                                      
                                                    [1]                                                      
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                             and(True(),False()) =  [0]                                                      
                                                    [0]                                                      
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                              and(True(),True()) =  [0]                                                      
                                                    [1]                                                      
                                                 >= [0]                                                      
                                                    [1]                                                      
                                                 =  True()                                                   
        
                     domatch(patcs,Cons(x,xs),n) =  [4 6] xs + [12]                                          
                                                    [0 1]      [8]                                           
                                                 >= [4 6] xs + [12]                                          
                                                    [0 1]      [8]                                           
                                                 =  domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
        
                     domatch(Cons(x,xs),Nil(),n) =  [12]                                                     
                                                    [8]                                                      
                                                 >= [0]                                                      
                                                    [4]                                                      
                                                 =  Nil()                                                    
        
                          domatch(Nil(),Nil(),n) =  [12]                                                     
                                                    [8]                                                      
                                                 >= [4]                                                      
                                                    [8]                                                      
                                                 =  Cons(n,Nil())                                            
        
        domatch[Ite](False(),patcs,Cons(x,xs),n) =  [4 5] xs + [4]                                           
                                                    [0 1]      [7]                                           
                                                 >= [4 2] xs + [4]                                           
                                                    [0 1]      [4]                                           
                                                 =  domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))              
        
         domatch[Ite](True(),patcs,Cons(x,xs),n) =  [4 5] xs + [8]                                           
                                                    [0 1]      [8]                                           
                                                 >= [4 3] xs + [8]                                           
                                                    [0 1]      [8]                                           
                                                 =  Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))      
        
                eqNatList(Cons(x,xs),Cons(y,ys)) =  [5 7] xs + [0 0] ys + [11]                               
                                                    [0 0]      [0 1]      [5]                                
                                                 >= [5 2] xs + [0 0] ys + [4]                                
                                                    [0 0]      [0 1]      [5]                                
                                                 =  eqNatList[Ite](!EQ(x,y),y,ys,x,xs)                       
        
                     eqNatList(Cons(x,xs),Nil()) =  [5 7] xs + [11]                                          
                                                    [0 0]      [5]                                           
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                     eqNatList(Nil(),Cons(y,ys)) =  [0 0] ys + [11]                                          
                                                    [0 1]      [5]                                           
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                          eqNatList(Nil(),Nil()) =  [11]                                                     
                                                    [5]                                                      
                                                 >= [0]                                                      
                                                    [1]                                                      
                                                 =  True()                                                   
        
               eqNatList[Ite](False(),y,ys,x,xs) =  [5 2] xs + [0 0] ys + [2]                                
                                                    [0 0]      [0 1]      [5]                                
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                eqNatList[Ite](True(),y,ys,x,xs) =  [5 2] xs + [0 0] ys + [3]                                
                                                    [0 0]      [0 1]      [5]                                
                                                 >= [5 2] xs + [0 0] ys + [3]                                
                                                    [0 0]      [0 1]      [1]                                
                                                 =  eqNatList(xs,ys)                                         
        
                            notEmpty(Cons(x,xs)) =  [0 0] xs + [0]                                           
                                                    [1 2]      [4]                                           
                                                 >= [0]                                                      
                                                    [1]                                                      
                                                 =  True()                                                   
        
                                 notEmpty(Nil()) =  [0]                                                      
                                                    [4]                                                      
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                        prefix(Cons(x,xs),Nil()) =  [4]                                                      
                                                    [1]                                                      
                                                 >= [0]                                                      
                                                    [0]                                                      
                                                 =  False()                                                  
        
                                prefix(Nil(),cs) =  [0 1] cs + [0]                                           
                                                    [0 0]      [1]                                           
                                                 >= [0]                                                      
                                                    [1]                                                      
                                                 =  True()                                                   
        
                            strmatch(patstr,str) =  [0 0] patstr + [4 3] str + [4]                           
                                                    [0 4]          [1 1]       [4]                           
                                                 >= [4 2] str + [4]                                          
                                                    [0 1]       [4]                                          
                                                 =  domatch(patstr,str,Nil())                                
        
* Step 8: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            !EQ(0(),0()) -> True()
            !EQ(0(),S(y)) -> False()
            !EQ(S(x),0()) -> False()
            !EQ(S(x),S(y)) -> !EQ(x,y)
            and(False(),False()) -> False()
            and(False(),True()) -> False()
            and(True(),False()) -> False()
            and(True(),True()) -> True()
            domatch(patcs,Cons(x,xs),n) -> domatch[Ite](prefix(patcs,Cons(x,xs)),patcs,Cons(x,xs),n)
            domatch(Cons(x,xs),Nil(),n) -> Nil()
            domatch(Nil(),Nil(),n) -> Cons(n,Nil())
            domatch[Ite](False(),patcs,Cons(x,xs),n) -> domatch(patcs,xs,Cons(n,Cons(Nil(),Nil())))
            domatch[Ite](True(),patcs,Cons(x,xs),n) -> Cons(n,domatch(patcs,xs,Cons(n,Cons(Nil(),Nil()))))
            eqNatList(Cons(x,xs),Cons(y,ys)) -> eqNatList[Ite](!EQ(x,y),y,ys,x,xs)
            eqNatList(Cons(x,xs),Nil()) -> False()
            eqNatList(Nil(),Cons(y,ys)) -> False()
            eqNatList(Nil(),Nil()) -> True()
            eqNatList[Ite](False(),y,ys,x,xs) -> False()
            eqNatList[Ite](True(),y,ys,x,xs) -> eqNatList(xs,ys)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            prefix(Cons(x,xs),Nil()) -> False()
            prefix(Cons(x',xs'),Cons(x,xs)) -> and(!EQ(x',x),prefix(xs',xs))
            prefix(Nil(),cs) -> True()
            strmatch(patstr,str) -> domatch(patstr,str,Nil())
        - Signature:
            {!EQ/2,and/2,domatch/3,domatch[Ite]/4,eqNatList/2,eqNatList[Ite]/5,notEmpty/1,prefix/2,strmatch/2} / {0/0
            ,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {!EQ,and,domatch,domatch[Ite],eqNatList,eqNatList[Ite]
            ,notEmpty,prefix,strmatch} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))