WORST_CASE(?,O(n^2))
* Step 1: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(if) = {1,3},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(-) = [1] x1 + [5]                  
                p(0) = [8]                           
              p(div) = [1] x1 + [1] x2 + [0]         
            p(false) = [0]                           
               p(if) = [1] x1 + [2] x2 + [1] x3 + [4]
               p(lt) = [0]                           
                p(s) = [1] x1 + [0]                  
             p(true) = [0]                           
          
          Following rules are strictly oriented:
                 -(x,0()) = [1] x + [5]        
                          > [1] x + [0]        
                          = x                  
          
              -(0(),s(y)) = [13]               
                          > [8]                
                          = 0()                
          
          if(false(),x,y) = [2] x + [1] y + [4]
                          > [1] y + [0]        
                          = y                  
          
           if(true(),x,y) = [2] x + [1] y + [4]
                          > [1] x + [0]        
                          = x                  
          
          
          Following rules are (at-least) weakly oriented:
            -(s(x),s(y)) =  [1] x + [5]                        
                         >= [1] x + [5]                        
                         =  -(x,y)                             
          
              div(x,0()) =  [1] x + [8]                        
                         >= [8]                                
                         =  0()                                
          
              div(0(),y) =  [1] y + [8]                        
                         >= [8]                                
                         =  0()                                
          
          div(s(x),s(y)) =  [1] x + [1] y + [0]                
                         >= [1] x + [1] y + [25]               
                         =  if(lt(x,y),0(),s(div(-(x,y),s(y))))
          
               lt(x,0()) =  [0]                                
                         >= [0]                                
                         =  false()                            
          
            lt(0(),s(y)) =  [0]                                
                         >= [0]                                
                         =  true()                             
          
           lt(s(x),s(y)) =  [0]                                
                         >= [0]                                
                         =  lt(x,y)                            
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            if(false(),x,y) -> y
            if(true(),x,y) -> x
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(if) = {1,3},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(-) = [1] x1 + [12]                 
                p(0) = [1]                           
              p(div) = [1] x1 + [2] x2 + [1]         
            p(false) = [1]                           
               p(if) = [1] x1 + [1] x2 + [1] x3 + [1]
               p(lt) = [0]                           
                p(s) = [1] x1 + [1]                  
             p(true) = [13]                          
          
          Following rules are strictly oriented:
          -(s(x),s(y)) = [1] x + [13]
                       > [1] x + [12]
                       = -(x,y)      
          
            div(x,0()) = [1] x + [3] 
                       > [1]         
                       = 0()         
          
            div(0(),y) = [2] y + [2] 
                       > [1]         
                       = 0()         
          
          
          Following rules are (at-least) weakly oriented:
                 -(x,0()) =  [1] x + [12]                       
                          >= [1] x + [0]                        
                          =  x                                  
          
              -(0(),s(y)) =  [13]                               
                          >= [1]                                
                          =  0()                                
          
           div(s(x),s(y)) =  [1] x + [2] y + [4]                
                          >= [1] x + [2] y + [18]               
                          =  if(lt(x,y),0(),s(div(-(x,y),s(y))))
          
          if(false(),x,y) =  [1] x + [1] y + [2]                
                          >= [1] y + [0]                        
                          =  y                                  
          
           if(true(),x,y) =  [1] x + [1] y + [14]               
                          >= [1] x + [0]                        
                          =  x                                  
          
                lt(x,0()) =  [0]                                
                          >= [1]                                
                          =  false()                            
          
             lt(0(),s(y)) =  [0]                                
                          >= [13]                               
                          =  true()                             
          
            lt(s(x),s(y)) =  [0]                                
                          >= [0]                                
                          =  lt(x,y)                            
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            if(false(),x,y) -> y
            if(true(),x,y) -> x
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(if) = {1,3},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(-) = [1] x1 + [11]                 
                p(0) = [6]                           
              p(div) = [1] x1 + [4] x2 + [0]         
            p(false) = [0]                           
               p(if) = [1] x1 + [3] x2 + [1] x3 + [0]
               p(lt) = [2]                           
                p(s) = [1] x1 + [0]                  
             p(true) = [1]                           
          
          Following rules are strictly oriented:
             lt(x,0()) = [2]    
                       > [0]    
                       = false()
          
          lt(0(),s(y)) = [2]    
                       > [1]    
                       = true() 
          
          
          Following rules are (at-least) weakly oriented:
                 -(x,0()) =  [1] x + [11]                       
                          >= [1] x + [0]                        
                          =  x                                  
          
              -(0(),s(y)) =  [17]                               
                          >= [6]                                
                          =  0()                                
          
             -(s(x),s(y)) =  [1] x + [11]                       
                          >= [1] x + [11]                       
                          =  -(x,y)                             
          
               div(x,0()) =  [1] x + [24]                       
                          >= [6]                                
                          =  0()                                
          
               div(0(),y) =  [4] y + [6]                        
                          >= [6]                                
                          =  0()                                
          
           div(s(x),s(y)) =  [1] x + [4] y + [0]                
                          >= [1] x + [4] y + [31]               
                          =  if(lt(x,y),0(),s(div(-(x,y),s(y))))
          
          if(false(),x,y) =  [3] x + [1] y + [0]                
                          >= [1] y + [0]                        
                          =  y                                  
          
           if(true(),x,y) =  [3] x + [1] y + [1]                
                          >= [1] x + [0]                        
                          =  x                                  
          
            lt(s(x),s(y)) =  [2]                                
                          >= [2]                                
                          =  lt(x,y)                            
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            lt(s(x),s(y)) -> lt(x,y)
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(if) = {1,3},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {-,div,if,lt}
        TcT has computed the following interpretation:
              p(-) = [1] x1 + [0]                  
              p(0) = [0]                           
            p(div) = [2] x1 + [0]                  
          p(false) = [1]                           
             p(if) = [2] x1 + [2] x2 + [1] x3 + [2]
             p(lt) = [1]                           
              p(s) = [1] x1 + [8]                  
           p(true) = [1]                           
        
        Following rules are strictly oriented:
        div(s(x),s(y)) = [2] x + [16]                       
                       > [2] x + [12]                       
                       = if(lt(x,y),0(),s(div(-(x,y),s(y))))
        
        
        Following rules are (at-least) weakly oriented:
               -(x,0()) =  [1] x + [0]        
                        >= [1] x + [0]        
                        =  x                  
        
            -(0(),s(y)) =  [0]                
                        >= [0]                
                        =  0()                
        
           -(s(x),s(y)) =  [1] x + [8]        
                        >= [1] x + [0]        
                        =  -(x,y)             
        
             div(x,0()) =  [2] x + [0]        
                        >= [0]                
                        =  0()                
        
             div(0(),y) =  [0]                
                        >= [0]                
                        =  0()                
        
        if(false(),x,y) =  [2] x + [1] y + [4]
                        >= [1] y + [0]        
                        =  y                  
        
         if(true(),x,y) =  [2] x + [1] y + [4]
                        >= [1] x + [0]        
                        =  x                  
        
              lt(x,0()) =  [1]                
                        >= [1]                
                        =  false()            
        
           lt(0(),s(y)) =  [1]                
                        >= [1]                
                        =  true()             
        
          lt(s(x),s(y)) =  [1]                
                        >= [1]                
                        =  lt(x,y)            
        
* Step 5: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            lt(s(x),s(y)) -> lt(x,y)
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(if) = {1,3},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {-,div,if,lt}
        TcT has computed the following interpretation:
              p(-) = [1 0] x1 + [0]                      
                     [0 1]      [0]                      
              p(0) = [0]                                 
                     [0]                                 
            p(div) = [2 1] x1 + [2 0] x2 + [7]           
                     [0 1]      [0 0]      [0]           
          p(false) = [0]                                 
                     [2]                                 
             p(if) = [4 0] x1 + [2 4] x2 + [1 0] x3 + [2]
                     [0 0]      [2 2]      [0 1]      [0]
             p(lt) = [0 1] x1 + [0 0] x2 + [0]           
                     [0 0]      [0 2]      [2]           
              p(s) = [1 4] x1 + [1]                      
                     [0 1]      [1]                      
           p(true) = [0]                                 
                     [4]                                 
        
        Following rules are strictly oriented:
        lt(s(x),s(y)) = [0 1] x + [0 0] y + [1]
                        [0 0]     [0 2]     [4]
                      > [0 1] x + [0 0] y + [0]
                        [0 0]     [0 2]     [2]
                      = lt(x,y)                
        
        
        Following rules are (at-least) weakly oriented:
               -(x,0()) =  [1 0] x + [0]                      
                           [0 1]     [0]                      
                        >= [1 0] x + [0]                      
                           [0 1]     [0]                      
                        =  x                                  
        
            -(0(),s(y)) =  [0]                                
                           [0]                                
                        >= [0]                                
                           [0]                                
                        =  0()                                
        
           -(s(x),s(y)) =  [1 4] x + [1]                      
                           [0 1]     [1]                      
                        >= [1 0] x + [0]                      
                           [0 1]     [0]                      
                        =  -(x,y)                             
        
             div(x,0()) =  [2 1] x + [7]                      
                           [0 1]     [0]                      
                        >= [0]                                
                           [0]                                
                        =  0()                                
        
             div(0(),y) =  [2 0] y + [7]                      
                           [0 0]     [0]                      
                        >= [0]                                
                           [0]                                
                        =  0()                                
        
         div(s(x),s(y)) =  [2 9] x + [2 8] y + [12]           
                           [0 1]     [0 0]     [1]            
                        >= [2 9] x + [2 8] y + [12]           
                           [0 1]     [0 0]     [1]            
                        =  if(lt(x,y),0(),s(div(-(x,y),s(y))))
        
        if(false(),x,y) =  [2 4] x + [1 0] y + [2]            
                           [2 2]     [0 1]     [0]            
                        >= [1 0] y + [0]                      
                           [0 1]     [0]                      
                        =  y                                  
        
         if(true(),x,y) =  [2 4] x + [1 0] y + [2]            
                           [2 2]     [0 1]     [0]            
                        >= [1 0] x + [0]                      
                           [0 1]     [0]                      
                        =  x                                  
        
              lt(x,0()) =  [0 1] x + [0]                      
                           [0 0]     [2]                      
                        >= [0]                                
                           [2]                                
                        =  false()                            
        
           lt(0(),s(y)) =  [0 0] y + [0]                      
                           [0 2]     [4]                      
                        >= [0]                                
                           [4]                                
                        =  true()                             
        
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))